Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199770 by Rupesh123 last updated on 09/Nov/23

Answered by aleks041103 last updated on 09/Nov/23

C=π−3α  ⇒(5/(sin(2α)))=(6/(sin(π−3α)))=(6/(sin(3α)))  ⇒6sin(2α)=5sin(3α)  sin(2α)=2sin(α)cos(α)  sin(3α)=sin(2α)cos(α)+sin(α)cos(2α)=  =2sin(α)cos^2 (α)+sin(α)(1−2sin^2 (α))=  =2sin(α)(1−sin^2 (α))+sin(α)(1−2sin^2 (α))=  =2sin(α)−2sin^3 (α)+sin(α)−2sin^3 (α)=  =sin(α)(3−4sin^2 α)  ⇒6×2sin(α)cos(α)=5sin(α)(3−4sin^2 (α))  ⇒12cos(α)=5(4(1−sin^2 (α))−1)  ⇒12cos(α)=20cos^2 (α)−5  z=cos^2 (α)  ⇒20z^2 −12z−5=0  z_(1,2) =((12±(√(144+400)))/(40))=((12±(√(544)))/(40))=  =((12±(√(16×34)))/(40))=((3±(√(34)))/(10))  C=π−3α>0⇒0<α<π/3⇒z=cos(α)>0  ⇒z=((3+(√(34)))/(10))<1  X^2 =5^2 +6^2 −2×5×6×cos(α)=  =25+36−60z=  =61−6(3+(√(34)))=  =61−18−6(√(34))=  =43−6(√(34))=  =9+34−6(√(34))=  =(3)^2 −2×(3)×((√(34)))+((√(34)))^2 =  =((√(34))−3)^2   ⇒X=(√(34))−3

$${C}=\pi−\mathrm{3}\alpha \\ $$$$\Rightarrow\frac{\mathrm{5}}{{sin}\left(\mathrm{2}\alpha\right)}=\frac{\mathrm{6}}{{sin}\left(\pi−\mathrm{3}\alpha\right)}=\frac{\mathrm{6}}{{sin}\left(\mathrm{3}\alpha\right)} \\ $$$$\Rightarrow\mathrm{6}{sin}\left(\mathrm{2}\alpha\right)=\mathrm{5}{sin}\left(\mathrm{3}\alpha\right) \\ $$$${sin}\left(\mathrm{2}\alpha\right)=\mathrm{2}{sin}\left(\alpha\right){cos}\left(\alpha\right) \\ $$$${sin}\left(\mathrm{3}\alpha\right)={sin}\left(\mathrm{2}\alpha\right){cos}\left(\alpha\right)+{sin}\left(\alpha\right){cos}\left(\mathrm{2}\alpha\right)= \\ $$$$=\mathrm{2}{sin}\left(\alpha\right){cos}^{\mathrm{2}} \left(\alpha\right)+{sin}\left(\alpha\right)\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left(\alpha\right)\right)= \\ $$$$=\mathrm{2}{sin}\left(\alpha\right)\left(\mathrm{1}−{sin}^{\mathrm{2}} \left(\alpha\right)\right)+{sin}\left(\alpha\right)\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left(\alpha\right)\right)= \\ $$$$=\mathrm{2}{sin}\left(\alpha\right)−\mathrm{2}{sin}^{\mathrm{3}} \left(\alpha\right)+{sin}\left(\alpha\right)−\mathrm{2}{sin}^{\mathrm{3}} \left(\alpha\right)= \\ $$$$={sin}\left(\alpha\right)\left(\mathrm{3}−\mathrm{4}{sin}^{\mathrm{2}} \alpha\right) \\ $$$$\Rightarrow\mathrm{6}×\mathrm{2}{sin}\left(\alpha\right){cos}\left(\alpha\right)=\mathrm{5}{sin}\left(\alpha\right)\left(\mathrm{3}−\mathrm{4}{sin}^{\mathrm{2}} \left(\alpha\right)\right) \\ $$$$\Rightarrow\mathrm{12}{cos}\left(\alpha\right)=\mathrm{5}\left(\mathrm{4}\left(\mathrm{1}−{sin}^{\mathrm{2}} \left(\alpha\right)\right)−\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{12}{cos}\left(\alpha\right)=\mathrm{20}{cos}^{\mathrm{2}} \left(\alpha\right)−\mathrm{5} \\ $$$${z}={cos}^{\mathrm{2}} \left(\alpha\right) \\ $$$$\Rightarrow\mathrm{20}{z}^{\mathrm{2}} −\mathrm{12}{z}−\mathrm{5}=\mathrm{0} \\ $$$${z}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{12}\pm\sqrt{\mathrm{144}+\mathrm{400}}}{\mathrm{40}}=\frac{\mathrm{12}\pm\sqrt{\mathrm{544}}}{\mathrm{40}}= \\ $$$$=\frac{\mathrm{12}\pm\sqrt{\mathrm{16}×\mathrm{34}}}{\mathrm{40}}=\frac{\mathrm{3}\pm\sqrt{\mathrm{34}}}{\mathrm{10}} \\ $$$${C}=\pi−\mathrm{3}\alpha>\mathrm{0}\Rightarrow\mathrm{0}<\alpha<\pi/\mathrm{3}\Rightarrow{z}={cos}\left(\alpha\right)>\mathrm{0} \\ $$$$\Rightarrow{z}=\frac{\mathrm{3}+\sqrt{\mathrm{34}}}{\mathrm{10}}<\mathrm{1} \\ $$$${X}^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\mathrm{2}×\mathrm{5}×\mathrm{6}×{cos}\left(\alpha\right)= \\ $$$$=\mathrm{25}+\mathrm{36}−\mathrm{60}{z}= \\ $$$$=\mathrm{61}−\mathrm{6}\left(\mathrm{3}+\sqrt{\mathrm{34}}\right)= \\ $$$$=\mathrm{61}−\mathrm{18}−\mathrm{6}\sqrt{\mathrm{34}}= \\ $$$$=\mathrm{43}−\mathrm{6}\sqrt{\mathrm{34}}= \\ $$$$=\mathrm{9}+\mathrm{34}−\mathrm{6}\sqrt{\mathrm{34}}= \\ $$$$=\left(\mathrm{3}\right)^{\mathrm{2}} −\mathrm{2}×\left(\mathrm{3}\right)×\left(\sqrt{\mathrm{34}}\right)+\left(\sqrt{\mathrm{34}}\right)^{\mathrm{2}} = \\ $$$$=\left(\sqrt{\mathrm{34}}−\mathrm{3}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{X}=\sqrt{\mathrm{34}}−\mathrm{3} \\ $$

Commented by Mingma last updated on 09/Nov/23

Nice, solution

Answered by mr W last updated on 09/Nov/23

Commented by mr W last updated on 09/Nov/23

Method I  cos α=((6−((6−x)/2))/5)=(3/5)+(x/(10))  cos 2α=(((6−x)/2)/x)=(3/x)−(1/2)  (3/x)−(1/2)=2((3/5)+(x/(10)))^2 −1  x^3 +12x^2 +11x−150=0  (x+6)(x^2 +6x−25)=0  ⇒x=−6, −(√(34))−3 ⇒rejected  ⇒x=(√(34))−3 ✓

$$\underline{{Method}\:{I}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{6}−\frac{\mathrm{6}−{x}}{\mathrm{2}}}{\mathrm{5}}=\frac{\mathrm{3}}{\mathrm{5}}+\frac{{x}}{\mathrm{10}} \\ $$$$\mathrm{cos}\:\mathrm{2}\alpha=\frac{\frac{\mathrm{6}−{x}}{\mathrm{2}}}{{x}}=\frac{\mathrm{3}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{3}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{5}}+\frac{{x}}{\mathrm{10}}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} +\mathrm{11}{x}−\mathrm{150}=\mathrm{0} \\ $$$$\left({x}+\mathrm{6}\right)\left({x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{25}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=−\mathrm{6},\:−\sqrt{\mathrm{34}}−\mathrm{3}\:\Rightarrow{rejected} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{34}}−\mathrm{3}\:\checkmark \\ $$

Commented by aleks041103 last updated on 09/Nov/23

Veru nice and elegant! Bravo!!

$${Veru}\:{nice}\:{and}\:{elegant}!\:{Bravo}!! \\ $$

Commented by mr W last updated on 09/Nov/23

thanks sir!

$${thanks}\:{sir}! \\ $$

Commented by Mingma last updated on 09/Nov/23

Nice solution!

Answered by mr W last updated on 09/Nov/23

Commented by mr W last updated on 09/Nov/23

Method II  ΔABC ∼ ΔBDC  (x/5)=(5/(x+6))  ⇒x^2 +6x−25=0  ⇒x=−3+(√(34)) ✓

$$\underline{{Method}\:{II}} \\ $$$$\Delta{ABC}\:\sim\:\Delta{BDC} \\ $$$$\frac{{x}}{\mathrm{5}}=\frac{\mathrm{5}}{{x}+\mathrm{6}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{25}=\mathrm{0} \\ $$$$\Rightarrow{x}=−\mathrm{3}+\sqrt{\mathrm{34}}\:\checkmark \\ $$

Commented by Mingma last updated on 09/Nov/23

Nice solution!

Answered by ajfour last updated on 09/Nov/23

Commented by ajfour last updated on 09/Nov/23

2p+x=6  ⇒  2p=6−x  CD^( 2) =x^2 −p^2 =25−(x+p)^2   ⇒ 2x^2 +x(2p)=25  2x^2 +x(6−x)=25  (x+3)^2 =25+9  x=(√(34))−3

$$\mathrm{2}{p}+{x}=\mathrm{6} \\ $$$$\Rightarrow\:\:\mathrm{2}{p}=\mathrm{6}−{x} \\ $$$${CD}^{\:\mathrm{2}} ={x}^{\mathrm{2}} −{p}^{\mathrm{2}} =\mathrm{25}−\left({x}+{p}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}{x}^{\mathrm{2}} +{x}\left(\mathrm{2}{p}\right)=\mathrm{25} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{x}\left(\mathrm{6}−{x}\right)=\mathrm{25} \\ $$$$\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\mathrm{25}+\mathrm{9} \\ $$$${x}=\sqrt{\mathrm{34}}−\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com