Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199654 by hardmath last updated on 06/Nov/23

x^4  + 4x^3  − 8x + 1 − m = 0  has 4 real roots  find  m=?

$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{8x}\:+\:\mathrm{1}\:−\:\mathrm{m}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{4}\:\mathrm{real}\:\mathrm{roots} \\ $$$$\mathrm{find}\:\:\mathrm{m}=? \\ $$

Answered by Frix last updated on 07/Nov/23

This can be factorized and thus solved  x=−1±(√(3±(√(m+3)))) [4 combinations of signs]  ⇒  m+3>0∧3−(√(m+3))>0  ⇒  −3<m<6

$$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{factorized}\:\mathrm{and}\:\mathrm{thus}\:\mathrm{solved} \\ $$$${x}=−\mathrm{1}\pm\sqrt{\mathrm{3}\pm\sqrt{{m}+\mathrm{3}}}\:\left[\mathrm{4}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{signs}\right] \\ $$$$\Rightarrow \\ $$$${m}+\mathrm{3}>\mathrm{0}\wedge\mathrm{3}−\sqrt{{m}+\mathrm{3}}>\mathrm{0} \\ $$$$\Rightarrow \\ $$$$−\mathrm{3}<{m}<\mathrm{6} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com