Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199602 by hardmath last updated on 05/Nov/23

2 + 7 + 12 + ... + x = 270  Find:   x = ?

$$\mathrm{2}\:+\:\mathrm{7}\:+\:\mathrm{12}\:+\:...\:+\:\boldsymbol{\mathrm{x}}\:=\:\mathrm{270} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Answered by Rasheed.Sindhi last updated on 06/Nov/23

a=2,d=5  S_n =(n/2)(2a+(n−1)d)  S_n =(n/2)( 2(2)+(n−1)(5) )=270    4n+5n^2 −5n=540     5n^2 −n−540=0     ⇒n∉N⇒The question is defective.

$${a}=\mathrm{2},{d}=\mathrm{5} \\ $$$${S}_{{n}} =\frac{{n}}{\mathrm{2}}\left(\mathrm{2}{a}+\left({n}−\mathrm{1}\right){d}\right) \\ $$$${S}_{{n}} =\frac{{n}}{\mathrm{2}}\left(\:\mathrm{2}\left(\mathrm{2}\right)+\left({n}−\mathrm{1}\right)\left(\mathrm{5}\right)\:\right)=\mathrm{270} \\ $$$$\:\:\mathrm{4}{n}+\mathrm{5}{n}^{\mathrm{2}} −\mathrm{5}{n}=\mathrm{540} \\ $$$$\:\:\:\mathrm{5}{n}^{\mathrm{2}} −{n}−\mathrm{540}=\mathrm{0} \\ $$$$\:\:\:\Rightarrow{n}\notin\mathbb{N}\Rightarrow\mathcal{T}{he}\:{question}\:{is}\:{defective}. \\ $$

Answered by emilagazade last updated on 05/Nov/23

((x+2)/2) (((x−2)/5)+1)=270  (x+2)(x+3)=2700  x^2 +5x−2694=0  x isn′t natural but it must. something wrong.  sum should be 245 or 297 but 270 does′t work

$$\frac{{x}+\mathrm{2}}{\mathrm{2}}\:\left(\frac{{x}−\mathrm{2}}{\mathrm{5}}+\mathrm{1}\right)=\mathrm{270} \\ $$$$\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)=\mathrm{2700} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{2694}=\mathrm{0} \\ $$$${x}\:{isn}'{t}\:{natural}\:{but}\:{it}\:{must}.\:{something}\:{wrong}. \\ $$$${sum}\:{should}\:{be}\:\mathrm{245}\:{or}\:\mathrm{297}\:{but}\:\mathrm{270}\:{does}'{t}\:{work} \\ $$

Answered by Frix last updated on 05/Nov/23

S_n =Σ_(k=0) ^n (2+5k)=((5n^2 )/2)+((9n)/2)+2  S_9 =245  S_(10) =297

$${S}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(\mathrm{2}+\mathrm{5}{k}\right)=\frac{\mathrm{5}{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{9}{n}}{\mathrm{2}}+\mathrm{2} \\ $$$${S}_{\mathrm{9}} =\mathrm{245} \\ $$$${S}_{\mathrm{10}} =\mathrm{297} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com