Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 199393 by Calculusboy last updated on 02/Nov/23

Answered by cortano12 last updated on 03/Nov/23

 A=lim_(x→0)  (((1+(x/(2011)))(1+((2x)/(2012)))(1+((3x)/(2013)))−1)/x)    A= (1/(2011)) +(2/(2012)) + (3/(2013))

$$\:\mathrm{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{2011}}\right)\left(\mathrm{1}+\frac{\mathrm{2x}}{\mathrm{2012}}\right)\left(\mathrm{1}+\frac{\mathrm{3x}}{\mathrm{2013}}\right)−\mathrm{1}}{\mathrm{x}} \\ $$$$\:\:\mathrm{A}=\:\frac{\mathrm{1}}{\mathrm{2011}}\:+\frac{\mathrm{2}}{\mathrm{2012}}\:+\:\frac{\mathrm{3}}{\mathrm{2013}}\: \\ $$

Commented by essaad last updated on 03/Nov/23

hi sir Can you explain to us how you did that?

Commented by MathematicalUser2357 last updated on 03/Nov/23

  Calculator???

$$ \\ $$Calculator???

Answered by mr W last updated on 03/Nov/23

((1+x))^(1/(2011)) =(1+x)^(1/(2011)) =1+(x/(2011))+terms with x^2  or higher                =1+(x/(2011))+o(x^2 )  similarly  ((1+2x))^(1/(2012)) =1+((2x)/(2012))+o(x^2 )  ((1+3x))^(1/(2013)) =1+((3x)/(2013))+o(x^2 )    ((1+x))^(1/(2011)) ×((1+2x))^(1/(2012)) ×((1+3x))^(1/(2013))   =[1+(x/(2011))+o(x^2 )][1+((2x)/(2012))+o(x^2 )][1+((3x)/(2013))+o(x^2 )]  =1+((1/(2011))+(2/(2012))+(3/(2013)))x+o(x^2 )    ((((1+x))^(1/(2011)) ×((1+2x))^(1/(2012)) ×((1+3x))^(1/(2013)) −1)/x)  =((1/(2011))+(2/(2012))+(3/(2013)))+o(x)    lim_(x→0) ((((1+x))^(1/(2011)) ×((1+2x))^(1/(2012)) ×((1+3x))^(1/(2013)) −1)/x)  =lim_(x→0) [((1/(2011))+(2/(2012))+(3/(2013)))+o(x)]  =(1/(2011))+(2/(2012))+(3/(2013))+lim_(x→0) o(x)  =(1/(2011))+(2/(2012))+(3/(2013))+0  =(1/(2011))+(2/(2012))+(3/(2013))

$$\sqrt[{\mathrm{2011}}]{\mathrm{1}+{x}}=\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{\mathrm{2011}}} =\mathrm{1}+\frac{{x}}{\mathrm{2011}}+{terms}\:{with}\:{x}^{\mathrm{2}} \:{or}\:{higher} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\frac{{x}}{\mathrm{2011}}+{o}\left({x}^{\mathrm{2}} \right) \\ $$$${similarly} \\ $$$$\sqrt[{\mathrm{2012}}]{\mathrm{1}+\mathrm{2}{x}}=\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{2012}}+{o}\left({x}^{\mathrm{2}} \right) \\ $$$$\sqrt[{\mathrm{2013}}]{\mathrm{1}+\mathrm{3}{x}}=\mathrm{1}+\frac{\mathrm{3}{x}}{\mathrm{2013}}+{o}\left({x}^{\mathrm{2}} \right) \\ $$$$ \\ $$$$\sqrt[{\mathrm{2011}}]{\mathrm{1}+{x}}×\sqrt[{\mathrm{2012}}]{\mathrm{1}+\mathrm{2}{x}}×\sqrt[{\mathrm{2013}}]{\mathrm{1}+\mathrm{3}{x}} \\ $$$$=\left[\mathrm{1}+\frac{{x}}{\mathrm{2011}}+{o}\left({x}^{\mathrm{2}} \right)\right]\left[\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{2012}}+{o}\left({x}^{\mathrm{2}} \right)\right]\left[\mathrm{1}+\frac{\mathrm{3}{x}}{\mathrm{2013}}+{o}\left({x}^{\mathrm{2}} \right)\right] \\ $$$$=\mathrm{1}+\left(\frac{\mathrm{1}}{\mathrm{2011}}+\frac{\mathrm{2}}{\mathrm{2012}}+\frac{\mathrm{3}}{\mathrm{2013}}\right){x}+{o}\left({x}^{\mathrm{2}} \right) \\ $$$$ \\ $$$$\frac{\sqrt[{\mathrm{2011}}]{\mathrm{1}+{x}}×\sqrt[{\mathrm{2012}}]{\mathrm{1}+\mathrm{2}{x}}×\sqrt[{\mathrm{2013}}]{\mathrm{1}+\mathrm{3}{x}}−\mathrm{1}}{{x}} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2011}}+\frac{\mathrm{2}}{\mathrm{2012}}+\frac{\mathrm{3}}{\mathrm{2013}}\right)+{o}\left({x}\right) \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{2011}}]{\mathrm{1}+{x}}×\sqrt[{\mathrm{2012}}]{\mathrm{1}+\mathrm{2}{x}}×\sqrt[{\mathrm{2013}}]{\mathrm{1}+\mathrm{3}{x}}−\mathrm{1}}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left(\frac{\mathrm{1}}{\mathrm{2011}}+\frac{\mathrm{2}}{\mathrm{2012}}+\frac{\mathrm{3}}{\mathrm{2013}}\right)+{o}\left({x}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2011}}+\frac{\mathrm{2}}{\mathrm{2012}}+\frac{\mathrm{3}}{\mathrm{2013}}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{o}\left({x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2011}}+\frac{\mathrm{2}}{\mathrm{2012}}+\frac{\mathrm{3}}{\mathrm{2013}}+\mathrm{0} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2011}}+\frac{\mathrm{2}}{\mathrm{2012}}+\frac{\mathrm{3}}{\mathrm{2013}} \\ $$

Commented by Calculusboy last updated on 03/Nov/23

thanks sir

$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com