Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 197920 by cortano12 last updated on 04/Oct/23

Commented by cortano12 last updated on 04/Oct/23

if the area of shaded is 320 cm^2   then find the area of big triangle.

$$\mathrm{if}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{shaded}\:\mathrm{is}\:\mathrm{320}\:\mathrm{cm}^{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{big}\:\mathrm{triangle}.\: \\ $$

Answered by Tokugami last updated on 04/Oct/23

shaded area is 320 cm^2   first n triangles area: A((n/(10)))^2 =(A/(100))n^2   nth wedge area=(A/(100))(n^2 −(n−1)^2 )=(A/(100))(2n−1)  (A/(100))[(2(9)−1)+(2(7)−1)+(2(5)−1)+(2(3)−1)+(2(1)−1)]=320  (A/(100))(17+13+9+5+1)=320  ((45A)/(100))=320  A=((6400)/9) cm^2 =711.11 cm^2

$$\mathrm{shaded}\:\mathrm{area}\:\mathrm{is}\:\mathrm{320}\:\mathrm{cm}^{\mathrm{2}} \\ $$$$\mathrm{first}\:{n}\:\mathrm{triangles}\:\mathrm{area}:\:{A}\left(\frac{{n}}{\mathrm{10}}\right)^{\mathrm{2}} =\frac{{A}}{\mathrm{100}}{n}^{\mathrm{2}} \\ $$$$\mathrm{nth}\:\mathrm{wedge}\:\mathrm{area}=\frac{{A}}{\mathrm{100}}\left({n}^{\mathrm{2}} −\left({n}−\mathrm{1}\right)^{\mathrm{2}} \right)=\frac{{A}}{\mathrm{100}}\left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$$$\frac{{A}}{\mathrm{100}}\left[\left(\mathrm{2}\left(\mathrm{9}\right)−\mathrm{1}\right)+\left(\mathrm{2}\left(\mathrm{7}\right)−\mathrm{1}\right)+\left(\mathrm{2}\left(\mathrm{5}\right)−\mathrm{1}\right)+\left(\mathrm{2}\left(\mathrm{3}\right)−\mathrm{1}\right)+\left(\mathrm{2}\left(\mathrm{1}\right)−\mathrm{1}\right)\right]=\mathrm{320} \\ $$$$\frac{{A}}{\mathrm{100}}\left(\mathrm{17}+\mathrm{13}+\mathrm{9}+\mathrm{5}+\mathrm{1}\right)=\mathrm{320} \\ $$$$\frac{\mathrm{45}{A}}{\mathrm{100}}=\mathrm{320} \\ $$$${A}=\frac{\mathrm{6400}}{\mathrm{9}}\:\mathrm{cm}^{\mathrm{2}} =\mathrm{711}.\mathrm{11}\:\mathrm{cm}^{\mathrm{2}} \\ $$$$ \\ $$

Answered by Sutrisno last updated on 14/Oct/23

$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com