Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 19792 by Tinkutara last updated on 15/Aug/17

Let ABCD be a convex quadrilateral  with ∠DAB = ∠BDC = 90°. Let the  incircles of triangles ABD and BCD  touch BD at P and Q, respectively,  with P lying in between B and Q. If  AD = 999 and PQ = 200 then what is  the sum of the radii of the incircles of  triangles ABD and BDC?

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{with}\:\angle{DAB}\:=\:\angle{BDC}\:=\:\mathrm{90}°.\:\mathrm{Let}\:\mathrm{the} \\ $$$$\mathrm{incircles}\:\mathrm{of}\:\mathrm{triangles}\:{ABD}\:\mathrm{and}\:{BCD} \\ $$$$\mathrm{touch}\:{BD}\:\mathrm{at}\:{P}\:\mathrm{and}\:{Q},\:\mathrm{respectively}, \\ $$$$\mathrm{with}\:{P}\:\mathrm{lying}\:\mathrm{in}\:\mathrm{between}\:{B}\:\mathrm{and}\:{Q}.\:\mathrm{If} \\ $$$${AD}\:=\:\mathrm{999}\:\mathrm{and}\:{PQ}\:=\:\mathrm{200}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{radii}\:\mathrm{of}\:\mathrm{the}\:\mathrm{incircles}\:\mathrm{of} \\ $$$$\mathrm{triangles}\:{ABD}\:\mathrm{and}\:{BDC}? \\ $$

Answered by ajfour last updated on 16/Aug/17

Commented by ajfour last updated on 16/Aug/17

   DP=rcot θ  ;  DQ=R ;   QP=d    AD=a =rcot θ+r    ...(i)    As  DP=DQ+QP    rcot θ=R+d              ...(ii)  from (i) and (ii)           a−r=R+d   ⇒   R+r=a−d .

$$\:\:\:\mathrm{DP}=\mathrm{rcot}\:\theta\:\:;\:\:\mathrm{DQ}=\mathrm{R}\:;\:\:\:\mathrm{QP}=\mathrm{d} \\ $$$$\:\:\mathrm{AD}=\mathrm{a}\:=\mathrm{rcot}\:\theta+\mathrm{r}\:\:\:\:...\left(\mathrm{i}\right) \\ $$$$\:\:\mathrm{As}\:\:\mathrm{DP}=\mathrm{DQ}+\mathrm{QP} \\ $$$$\:\:\mathrm{rcot}\:\theta=\mathrm{R}+\mathrm{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left(\mathrm{ii}\right) \\ $$$$\mathrm{from}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}−\mathrm{r}=\mathrm{R}+\mathrm{d} \\ $$$$\:\Rightarrow\:\:\:\boldsymbol{\mathrm{R}}+\boldsymbol{\mathrm{r}}=\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{d}}\:. \\ $$

Commented by Tinkutara last updated on 16/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Answered by ajfour last updated on 16/Aug/17

  R+r=AD−PQ .

$$\:\:\mathrm{R}+\mathrm{r}=\mathrm{AD}−\mathrm{PQ}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com