Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 197821 by mnjuly1970 last updated on 30/Sep/23

      find the value  of :         Ω = ∫_0 ^( 1) ((  ln ( 1+ (1/x^( 2) ) ))/(2 + x^( 2) )) dx = ?

$$ \\ $$$$\:\:\:\:{find}\:{the}\:{value}\:\:{of}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:\mathrm{ln}\:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\right)}{\mathrm{2}\:+\:{x}^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$ \\ $$

Answered by witcher3 last updated on 05/Oct/23

x→(1/x)  Ω=∫_1 ^∞ ((ln(1+x^2 ))/((2x^2 +1)))dx  Ω(a)=∫_1 ^∞ ((ln(1+ax^2 ))/((2x^2 +1))),Ω(a)=0  Ω′(a)=∫_1 ^∞ (x^2 /((1+ax^2 )(2x^2 +1)))  =∫_1 ^∞ ((2x^2 +1−(1+ax^2 ))/((2−a)(2x^2 +1)(1+ax^2 )))  =(1/(2−a)){∫_1 ^∞ (dx/(1+ax^2 )) −∫_1 ^∞ (dx/(1+2x^2 ))}  =(1/((2−a)(√a)))((π/2)−tan^(−1) ((√a)))−(1/((2−a)(√2)))((π/2)−tan^(−1) ((√2)))  −∫_0 ^1 ((tan^(−1) ((√a)))/( (√a)(2−a)))da  =−2∫_0 ^1 ((tan^(−1) (a))/(2−a^2 ))..can solved Li_2 ..  but non nice close formez

$$\mathrm{x}\rightarrow\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\Omega=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{dx} \\ $$$$\Omega\left(\mathrm{a}\right)=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{ax}^{\mathrm{2}} \right)}{\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)},\Omega\left(\mathrm{a}\right)=\mathrm{0} \\ $$$$\Omega'\left(\mathrm{a}\right)=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{ax}^{\mathrm{2}} \right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{1}+\mathrm{ax}^{\mathrm{2}} \right)}{\left(\mathrm{2}−\mathrm{a}\right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{1}+\mathrm{ax}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}−\mathrm{a}}\left\{\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{ax}^{\mathrm{2}} }\:−\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{2x}^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{a}\right)\sqrt{\mathrm{a}}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{a}}\right)\right)−\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{a}\right)\sqrt{\mathrm{2}}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)\right) \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{a}}\right)}{\:\sqrt{\mathrm{a}}\left(\mathrm{2}−\mathrm{a}\right)}\mathrm{da} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{a}\right)}{\mathrm{2}−\mathrm{a}^{\mathrm{2}} }..\mathrm{can}\:\mathrm{solved}\:\mathrm{Li}_{\mathrm{2}} .. \\ $$$$\mathrm{but}\:\mathrm{non}\:\mathrm{nice}\:\mathrm{close}\:\mathrm{formez} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com