Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 197795 by cortano12 last updated on 29/Sep/23

Answered by mr W last updated on 29/Sep/23

(1)  x+y=x^2 +y^2   (x−(1/2))^2 +(y−(1/2))^2 =((1/( (√2))))^2   x=(1/2)+(1/( (√2))) cos θ  y=(1/2)+(1/( (√2))) sin θ  t=x+y=1+sin ((π/4)+θ)=1+sin α ∈[0, 2]  x^3 +y^3 =(x+y)^3 −(3/2)(x+y)[(x+y)^2 −x^2 −y^2 ]  x^3 +y^3 =(1/2)(x+y)^2 [3−(x+y)]  x^3 +y^3 =(1/2)t^2 (3−t) ∈[0, 2]  (2)  let 2^x =a≠0, 2^y =b≠0  a+b=a^2 +b^2   8^x +8^y =a^3 +b^3  ∈(0, 2]

$$\left(\mathrm{1}\right) \\ $$$${x}+{y}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{cos}\:\theta \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:\theta \\ $$$${t}={x}+{y}=\mathrm{1}+\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\theta\right)=\mathrm{1}+\mathrm{sin}\:\alpha\:\in\left[\mathrm{0},\:\mathrm{2}\right] \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\left({x}+{y}\right)^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}\left({x}+{y}\right)\left[\left({x}+{y}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right] \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}\right)^{\mathrm{2}} \left[\mathrm{3}−\left({x}+{y}\right)\right] \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} \left(\mathrm{3}−{t}\right)\:\in\left[\mathrm{0},\:\mathrm{2}\right] \\ $$$$\left(\mathrm{2}\right) \\ $$$${let}\:\mathrm{2}^{{x}} ={a}\neq\mathrm{0},\:\mathrm{2}^{{y}} ={b}\neq\mathrm{0} \\ $$$${a}+{b}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\mathrm{8}^{{x}} +\mathrm{8}^{{y}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} \:\in\left(\mathrm{0},\:\mathrm{2}\right] \\ $$

Answered by Frix last updated on 29/Sep/23

x^2 +y^2 −x−y=0  Let x=u−v∧y=u+v∧v≥0  2(u^2 +v^2 −u)=0  v=(√(u−u^2 ))  ⇒  x+y=x^2 +y^2 =2u  x^3 +y^3 =2u^2 (3−2u)  If x, y ∈R ⇒ 0≤u≤1 ⇒ 0≤x^3 +y^3 ≤2

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{x}−{y}=\mathrm{0} \\ $$$$\mathrm{Let}\:{x}={u}−{v}\wedge{y}={u}+{v}\wedge{v}\geqslant\mathrm{0} \\ $$$$\mathrm{2}\left({u}^{\mathrm{2}} +{v}^{\mathrm{2}} −{u}\right)=\mathrm{0} \\ $$$${v}=\sqrt{{u}−{u}^{\mathrm{2}} } \\ $$$$\Rightarrow \\ $$$${x}+{y}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2}{u} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{2}{u}^{\mathrm{2}} \left(\mathrm{3}−\mathrm{2}{u}\right) \\ $$$$\mathrm{If}\:{x},\:{y}\:\in\mathbb{R}\:\Rightarrow\:\mathrm{0}\leqslant{u}\leqslant\mathrm{1}\:\Rightarrow\:\mathrm{0}\leqslant{x}^{\mathrm{3}} +{y}^{\mathrm{3}} \leqslant\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com