Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 198815 by a.lgnaoui last updated on 24/Oct/23

Determiner x

$$\mathrm{Determiner}\:\boldsymbol{\mathrm{x}} \\ $$

Commented by a.lgnaoui last updated on 24/Oct/23

Commented by cherokeesay last updated on 24/Oct/23

Commented by a.lgnaoui last updated on 24/Oct/23

exact  we can use the rectangle triangle  ADB  DE^2 =AE×EB     (DE=x+6)    (x+6)^2 =(R+zcos 𝛂)(R−zcos 𝛂)                   =R^2 −z^2 cos^2 𝛂    sin 𝛂=(6/z)   cos^2 𝛂=((z^2 −36)/z^2 )    R^2 =64+z^2   ⇒x^2 +12x+36=64+36      x^2 +12x−64=0       x=4

$$\mathrm{exact} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{triangle} \\ $$$$\boldsymbol{\mathrm{ADB}} \\ $$$$\boldsymbol{\mathrm{DE}}^{\mathrm{2}} =\boldsymbol{\mathrm{AE}}×\boldsymbol{\mathrm{EB}}\:\:\:\:\:\left(\boldsymbol{\mathrm{DE}}=\boldsymbol{\mathrm{x}}+\mathrm{6}\right) \\ $$$$\:\:\left(\boldsymbol{\mathrm{x}}+\mathrm{6}\right)^{\mathrm{2}} =\left(\boldsymbol{\mathrm{R}}+\boldsymbol{\mathrm{z}}\mathrm{cos}\:\boldsymbol{\alpha}\right)\left(\boldsymbol{\mathrm{R}}−\boldsymbol{\mathrm{z}}\mathrm{cos}\:\boldsymbol{\alpha}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{R}^{\mathrm{2}} −\boldsymbol{\mathrm{z}}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \boldsymbol{\alpha} \\ $$$$\:\:\mathrm{sin}\:\boldsymbol{\alpha}=\frac{\mathrm{6}}{\boldsymbol{\mathrm{z}}}\:\:\:\mathrm{cos}\:^{\mathrm{2}} \boldsymbol{\alpha}=\frac{\boldsymbol{\mathrm{z}}^{\mathrm{2}} −\mathrm{36}}{\boldsymbol{\mathrm{z}}^{\mathrm{2}} } \\ $$$$\:\:\boldsymbol{\mathrm{R}}^{\mathrm{2}} =\mathrm{64}+\boldsymbol{\mathrm{z}}^{\mathrm{2}} \\ $$$$\Rightarrow\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{12}\boldsymbol{\mathrm{x}}+\mathrm{36}=\mathrm{64}+\mathrm{36} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{12}\boldsymbol{\mathrm{x}}−\mathrm{64}=\mathrm{0}\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}=\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com