Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19734 by Tinkutara last updated on 15/Aug/17

If the imaginary part of ((2z + 1)/(iz + 1)) is −2,  then the locus of the point representing  z in the complex plane is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{imaginary}\:\mathrm{part}\:\mathrm{of}\:\frac{\mathrm{2}{z}\:+\:\mathrm{1}}{{iz}\:+\:\mathrm{1}}\:\mathrm{is}\:−\mathrm{2}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{representing} \\ $$$${z}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}\:\mathrm{is} \\ $$

Answered by ajfour last updated on 15/Aug/17

  ((2z+1)/(iz+1))=(((2z+1)(1−iz^� ))/((iz+1)(1−iz^� )))    =((2z−2i∣z^2 ∣+1−iz^� )/(iz+∣z∣^2 +1−iz^� ))  if z=x+iy    =((2(x+iy)−2i(x^2 +y^2 )+1−ix−y)/(1+x^2 +y^2 −2y))  as imaginary part of above complex  number is =−2 , we can write    ((2y−2x^2 −2y^2 −x)/(1+x^2 +y^2 −2y))=−2  or    2y+x−2=0  ⇒   4iy+2ix−4i=0   or     2(z−z^� )+i(z+z^� )−4i=0        (2+i)z−(2−i)z^� −4i=0  ⇒   (1−2i)z+(1+2i)z^� +4=0 .

$$\:\:\frac{\mathrm{2z}+\mathrm{1}}{\mathrm{iz}+\mathrm{1}}=\frac{\left(\mathrm{2z}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{i}\bar {\mathrm{z}}\right)}{\left(\mathrm{iz}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{i}\bar {\mathrm{z}}\right)} \\ $$$$\:\:=\frac{\mathrm{2z}−\mathrm{2i}\mid\mathrm{z}^{\mathrm{2}} \mid+\mathrm{1}−\mathrm{i}\bar {\mathrm{z}}}{\mathrm{iz}+\mid\mathrm{z}\mid^{\mathrm{2}} +\mathrm{1}−\mathrm{i}\bar {\mathrm{z}}} \\ $$$$\mathrm{if}\:\mathrm{z}=\mathrm{x}+\mathrm{iy} \\ $$$$\:\:=\frac{\mathrm{2}\left(\mathrm{x}+\mathrm{iy}\right)−\mathrm{2i}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)+\mathrm{1}−\mathrm{ix}−\mathrm{y}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2y}} \\ $$$$\mathrm{as}\:\mathrm{imaginary}\:\mathrm{part}\:\mathrm{of}\:\mathrm{above}\:\mathrm{complex} \\ $$$$\mathrm{number}\:\mathrm{is}\:=−\mathrm{2}\:,\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$$$\:\:\frac{\mathrm{2y}−\mathrm{2x}^{\mathrm{2}} −\mathrm{2y}^{\mathrm{2}} −\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2y}}=−\mathrm{2} \\ $$$$\mathrm{or}\:\:\:\:\mathrm{2y}+\mathrm{x}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\mathrm{4iy}+\mathrm{2ix}−\mathrm{4i}=\mathrm{0} \\ $$$$\:\mathrm{or}\:\:\:\:\:\mathrm{2}\left(\mathrm{z}−\bar {\mathrm{z}}\right)+\mathrm{i}\left(\mathrm{z}+\bar {\mathrm{z}}\right)−\mathrm{4i}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\left(\mathrm{2}+\mathrm{i}\right)\mathrm{z}−\left(\mathrm{2}−\mathrm{i}\right)\bar {\mathrm{z}}−\mathrm{4i}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left(\mathrm{1}−\mathrm{2i}\right)\mathrm{z}+\left(\mathrm{1}+\mathrm{2i}\right)\bar {\mathrm{z}}+\mathrm{4}=\mathrm{0}\:. \\ $$

Commented by Tinkutara last updated on 15/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com