Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 19704 by Tinkutara last updated on 14/Aug/17

What is the sum (in base 10) of all the  natural numbers less than 64 which  have exactly three ones in their base 2  representation?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\left(\mathrm{in}\:\mathrm{base}\:\mathrm{10}\right)\:\mathrm{of}\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{natural}\:\mathrm{numbers}\:\mathrm{less}\:\mathrm{than}\:\mathrm{64}\:\mathrm{which} \\ $$$$\mathrm{have}\:\mathrm{exactly}\:\mathrm{three}\:\mathrm{ones}\:\mathrm{in}\:\mathrm{their}\:\mathrm{base}\:\mathrm{2} \\ $$$$\mathrm{representation}? \\ $$

Answered by mrW1 last updated on 15/Aug/17

“1” means 1, 2, 4, 8, 16, 32 from  right to left.  with three “1” we can get  following possible numbers:  32+16+8  32+16+4  32+16+2  32+16+1   ⇒ Σ=4×32+5×16−1=207  32+8+4  32+8+2  32+8+1  ⇒ Σ=3×32+4×8−1=127  32+4+2  32+4+1 ⇒ Σ=2×32+3×4−1=75  32+2+1 ⇒ 35  16+8+4  16+8+2  16+8+1 ⇒ Σ=3×16+4×8−1=79  16+4+2  16+4+1 ⇒ Σ=2×16+3×4−1=43  16+2+1 ⇒ 19  8+4+2  8+4+1 ⇒ Σ=2×8+3×4−1=27  8+2+1 ⇒11  4+2+1 ⇒ 7    Σ=207+127+75+35+79+43+19+27+11+7  =630

$$``\mathrm{1}''\:\mathrm{means}\:\mathrm{1},\:\mathrm{2},\:\mathrm{4},\:\mathrm{8},\:\mathrm{16},\:\mathrm{32}\:\mathrm{from} \\ $$$$\mathrm{right}\:\mathrm{to}\:\mathrm{left}. \\ $$$$\mathrm{with}\:\mathrm{three}\:``\mathrm{1}''\:\mathrm{we}\:\mathrm{can}\:\mathrm{get} \\ $$$$\mathrm{following}\:\mathrm{possible}\:\mathrm{numbers}: \\ $$$$\mathrm{32}+\mathrm{16}+\mathrm{8} \\ $$$$\mathrm{32}+\mathrm{16}+\mathrm{4} \\ $$$$\mathrm{32}+\mathrm{16}+\mathrm{2} \\ $$$$\mathrm{32}+\mathrm{16}+\mathrm{1}\:\:\:\Rightarrow\:\Sigma=\mathrm{4}×\mathrm{32}+\mathrm{5}×\mathrm{16}−\mathrm{1}=\mathrm{207} \\ $$$$\mathrm{32}+\mathrm{8}+\mathrm{4} \\ $$$$\mathrm{32}+\mathrm{8}+\mathrm{2} \\ $$$$\mathrm{32}+\mathrm{8}+\mathrm{1}\:\:\Rightarrow\:\Sigma=\mathrm{3}×\mathrm{32}+\mathrm{4}×\mathrm{8}−\mathrm{1}=\mathrm{127} \\ $$$$\mathrm{32}+\mathrm{4}+\mathrm{2} \\ $$$$\mathrm{32}+\mathrm{4}+\mathrm{1}\:\Rightarrow\:\Sigma=\mathrm{2}×\mathrm{32}+\mathrm{3}×\mathrm{4}−\mathrm{1}=\mathrm{75} \\ $$$$\mathrm{32}+\mathrm{2}+\mathrm{1}\:\Rightarrow\:\mathrm{35} \\ $$$$\mathrm{16}+\mathrm{8}+\mathrm{4} \\ $$$$\mathrm{16}+\mathrm{8}+\mathrm{2} \\ $$$$\mathrm{16}+\mathrm{8}+\mathrm{1}\:\Rightarrow\:\Sigma=\mathrm{3}×\mathrm{16}+\mathrm{4}×\mathrm{8}−\mathrm{1}=\mathrm{79} \\ $$$$\mathrm{16}+\mathrm{4}+\mathrm{2} \\ $$$$\mathrm{16}+\mathrm{4}+\mathrm{1}\:\Rightarrow\:\Sigma=\mathrm{2}×\mathrm{16}+\mathrm{3}×\mathrm{4}−\mathrm{1}=\mathrm{43} \\ $$$$\mathrm{16}+\mathrm{2}+\mathrm{1}\:\Rightarrow\:\mathrm{19} \\ $$$$\mathrm{8}+\mathrm{4}+\mathrm{2} \\ $$$$\mathrm{8}+\mathrm{4}+\mathrm{1}\:\Rightarrow\:\Sigma=\mathrm{2}×\mathrm{8}+\mathrm{3}×\mathrm{4}−\mathrm{1}=\mathrm{27} \\ $$$$\mathrm{8}+\mathrm{2}+\mathrm{1}\:\Rightarrow\mathrm{11} \\ $$$$\mathrm{4}+\mathrm{2}+\mathrm{1}\:\Rightarrow\:\mathrm{7} \\ $$$$ \\ $$$$\Sigma=\mathrm{207}+\mathrm{127}+\mathrm{75}+\mathrm{35}+\mathrm{79}+\mathrm{43}+\mathrm{19}+\mathrm{27}+\mathrm{11}+\mathrm{7} \\ $$$$=\mathrm{630} \\ $$

Commented by Tinkutara last updated on 15/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by mrW1 last updated on 16/Aug/17

there is an easier way to find the sum   without knowing each number:    2Σ=(1+2+4+8+16+32)×5×4=1260  ⇒Σ=1260/2=630

$$\mathrm{there}\:\mathrm{is}\:\mathrm{an}\:\mathrm{easier}\:\mathrm{way}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\: \\ $$$$\mathrm{without}\:\mathrm{knowing}\:\mathrm{each}\:\mathrm{number}: \\ $$$$ \\ $$$$\mathrm{2}\Sigma=\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+\mathrm{32}\right)×\mathrm{5}×\mathrm{4}=\mathrm{1260} \\ $$$$\Rightarrow\Sigma=\mathrm{1260}/\mathrm{2}=\mathrm{630} \\ $$

Commented by ajfour last updated on 16/Aug/17

             111            1110, and 2 other 4 digit ones          11100, and 5 other 5 digit ones       111000, and 9 other 6 digit ones  111+Σ1110+Σ11100+Σ111000  =7+3×8+2(4+2+1)+           6×16+3(8+4+2+1)+           10×32+4(16+8+4+2+1)  = 7+24+14+96+45+320+124  =630 .

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{111} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{1110},\:\mathrm{and}\:\mathrm{2}\:\mathrm{other}\:\mathrm{4}\:\mathrm{digit}\:\mathrm{ones} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{11100},\:\mathrm{and}\:\mathrm{5}\:\mathrm{other}\:\mathrm{5}\:\mathrm{digit}\:\mathrm{ones} \\ $$$$\:\:\:\:\:\mathrm{111000},\:\mathrm{and}\:\mathrm{9}\:\mathrm{other}\:\mathrm{6}\:\mathrm{digit}\:\mathrm{ones} \\ $$$$\mathrm{111}+\Sigma\mathrm{1110}+\Sigma\mathrm{11100}+\Sigma\mathrm{111000} \\ $$$$=\mathrm{7}+\mathrm{3}×\mathrm{8}+\mathrm{2}\left(\mathrm{4}+\mathrm{2}+\mathrm{1}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{6}×\mathrm{16}+\mathrm{3}\left(\mathrm{8}+\mathrm{4}+\mathrm{2}+\mathrm{1}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{10}×\mathrm{32}+\mathrm{4}\left(\mathrm{16}+\mathrm{8}+\mathrm{4}+\mathrm{2}+\mathrm{1}\right) \\ $$$$=\:\mathrm{7}+\mathrm{24}+\mathrm{14}+\mathrm{96}+\mathrm{45}+\mathrm{320}+\mathrm{124} \\ $$$$=\mathrm{630}\:. \\ $$

Commented by Tinkutara last updated on 16/Aug/17

Thank you both mrW1 and ajfour.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{both}\:\mathrm{mrW1}\:\mathrm{and}\:\mathrm{ajfour}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com