Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196757 by MrGHK last updated on 31/Aug/23

Answered by qaz last updated on 31/Aug/23

(√π)Σ(((((Γ(n+1))/(Γ(n+(3/2)))))′)/(n+1))=Σ(1/(n+1))∫_0 ^1 x^n (1−x)^(−1/2) lnxdx  =−∫_0 ^1 ((lnxln(1−x))/(x(√(1−x))))dx=−(∂^2 /(∂a∂b))∣_(a=(1/2) ,b=0) ∫_0 ^1 x^(a−1) (1−x)^(b−1) dx  =6ζ(2)ln2−7ζ(3)

$$\sqrt{\pi}\Sigma\frac{\left(\frac{\Gamma\left({n}+\mathrm{1}\right)}{\Gamma\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)}\right)'}{{n}+\mathrm{1}}=\Sigma\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{−\mathrm{1}/\mathrm{2}} {lnxdx} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnxln}\left(\mathrm{1}−{x}\right)}{{x}\sqrt{\mathrm{1}−{x}}}{dx}=−\frac{\partial^{\mathrm{2}} }{\partial{a}\partial{b}}\mid_{{a}=\frac{\mathrm{1}}{\mathrm{2}}\:,{b}=\mathrm{0}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx} \\ $$$$=\mathrm{6}\zeta\left(\mathrm{2}\right){ln}\mathrm{2}−\mathrm{7}\zeta\left(\mathrm{3}\right) \\ $$

Commented by MrGHK last updated on 31/Aug/23

wow nice solution

$${wow}\:{nice}\:{solution} \\ $$

Commented by MathedUp last updated on 01/Sep/23

How did you know ((d  )/ds) ((𝚪(s+1))/(𝚪(s+(3/2))))=(1/( (√π)))∫_0 ^1   ((u^s ∙ln(u))/( (√(1−u))))du ??

$$\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{know}\:\frac{\mathrm{d}\:\:}{\mathrm{d}{s}}\:\frac{\boldsymbol{\Gamma}\left({s}+\mathrm{1}\right)}{\boldsymbol{\Gamma}\left({s}+\frac{\mathrm{3}}{\mathrm{2}}\right)}=\frac{\mathrm{1}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{u}^{{s}} \centerdot\mathrm{ln}\left({u}\right)}{\:\sqrt{\mathrm{1}−{u}}}\mathrm{d}{u}\:?? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com