Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 196567 by pete last updated on 27/Aug/23

Show that (((1+ itanθ)/(1− itanθ)))^n =((1+ itan(nθ))/(1− tan(nθ)))

$$\mathrm{Show}\:\mathrm{that}\:\left(\frac{\mathrm{1}+\:\mathrm{itan}\theta}{\mathrm{1}−\:\mathrm{itan}\theta}\right)^{\mathrm{n}} =\frac{\mathrm{1}+\:\mathrm{itan}\left(\mathrm{n}\theta\right)}{\mathrm{1}−\:\mathrm{tan}\left(\mathrm{n}\theta\right)} \\ $$

Commented by mokys last updated on 27/Aug/23

(((1+itanθ)/(1−itanθ)))^n =((((cosθ+isinθ)/(cosθ))/((cosθ−isinθ)/(cosθ))))^n =(((cos(nθ)+isin(nθ))/(cos(nθ)−isin(nθ))))    = ((cos(nθ) [ 1+ i ((sin(nθ))/(cos(nθ)))])/(cos(nθ)[1−i((sin(nθ))/(cos(nθ))])) = ((1+itan(nθ))/(1−itan(nθ)))

$$\left(\frac{\mathrm{1}+{itan}\theta}{\mathrm{1}−{itan}\theta}\right)^{{n}} =\left(\frac{\frac{{cos}\theta+{isin}\theta}{{cos}\theta}}{\frac{{cos}\theta−{isin}\theta}{{cos}\theta}}\right)^{{n}} =\left(\frac{{cos}\left({n}\theta\right)+{isin}\left({n}\theta\right)}{{cos}\left({n}\theta\right)−{isin}\left({n}\theta\right)}\right) \\ $$$$ \\ $$$$=\:\frac{{cos}\left({n}\theta\right)\:\left[\:\mathrm{1}+\:{i}\:\frac{{sin}\left({n}\theta\right)}{{cos}\left({n}\theta\right)}\right]}{{cos}\left({n}\theta\right)\left[\mathrm{1}−{i}\frac{{sin}\left({n}\theta\right)}{{cos}\left({n}\theta\right.}\right]}\:=\:\frac{\mathrm{1}+{itan}\left({n}\theta\right)}{\mathrm{1}−{itan}\left({n}\theta\right)} \\ $$

Commented by pete last updated on 27/Aug/23

Than you sir

$$\mathrm{Than}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mokys last updated on 27/Aug/23

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com