Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196557 by BHOOPENDRA last updated on 27/Aug/23

Answered by qaz last updated on 27/Aug/23

∫_0 ^t e^(−u) sin udu=−ℑ∫_0 ^t e^(−(1+i)u) du=ℑ(1/(1+i))(e^(−(1+i)t) −1)  =−(1/2)e^(−t) (sin t+cos t)+(1/2)  I=∫_0 ^∞ e^(−t) (1/t)∙(−(1/2)e^(−t) (sin t+cos t)+(1/2))dt  =(1/2)∫_0 ^∞ (1/t)(e^(−t) −e^(−2t) (sin t+cos t))dt  =(1/2)∫_0 ^∞ 1∙((1/(1+t))−((1+(2+t))/((2+t)^2 +1)))dt  =[(1/4)ln((1+2t+t^2 )/(5+4t+t^2 ))−(1/2)arctan (2+t)]_0 ^∞   =(1/4)ln5−(π/4)+(1/2)arctan 2

$$\int_{\mathrm{0}} ^{{t}} {e}^{−{u}} \mathrm{sin}\:{udu}=−\Im\int_{\mathrm{0}} ^{{t}} {e}^{−\left(\mathrm{1}+{i}\right){u}} {du}=\Im\frac{\mathrm{1}}{\mathrm{1}+{i}}\left({e}^{−\left(\mathrm{1}+{i}\right){t}} −\mathrm{1}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{t}} \left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} \frac{\mathrm{1}}{{t}}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{t}} \left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}}\left({e}^{−{t}} −{e}^{−\mathrm{2}{t}} \left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \mathrm{1}\centerdot\left(\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{\mathrm{1}+\left(\mathrm{2}+{t}\right)}{\left(\mathrm{2}+{t}\right)^{\mathrm{2}} +\mathrm{1}}\right){dt} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{4}}{ln}\frac{\mathrm{1}+\mathrm{2}{t}+{t}^{\mathrm{2}} }{\mathrm{5}+\mathrm{4}{t}+{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\left(\mathrm{2}+{t}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{5}−\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com