Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196375 by RoseAli last updated on 23/Aug/23

∫(dx/(x(x^4 −1)))

$$\int\frac{{dx}}{{x}\left({x}^{\mathrm{4}} −\mathrm{1}\right)} \\ $$

Commented by RoseAli last updated on 23/Aug/23

∫(dx/(x(x^4 +1)))

$$\int\frac{{dx}}{{x}\left({x}^{\mathrm{4}} +\mathrm{1}\right)} \\ $$

Answered by MM42 last updated on 23/Aug/23

a)    (1/4)ln (((x^4 −1)/x^4 )) +c ✓  b)    (1/4)ln ((x^4 /(x^4 +1))) +c ✓

$$\left.{a}\right)\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}{ln}\:\left(\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}^{\mathrm{4}} }\right)\:+{c}\:\checkmark \\ $$$$\left.{b}\right)\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}{ln}\:\left(\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{4}} +\mathrm{1}}\right)\:+{c}\:\checkmark \\ $$$$ \\ $$

Commented by RoseAli last updated on 23/Aug/23

step by step

$$\mathrm{step}\:\mathrm{by}\:\mathrm{step} \\ $$

Commented by Frix last updated on 23/Aug/23

I=∫(dt/(x(x^4 +a)))  Simply use t=x^4  ⇒  I=((ln ∣x∣)/a)−((ln ∣x^4 +a∣)/(4a))+C

$${I}=\int\frac{{dt}}{{x}\left({x}^{\mathrm{4}} +{a}\right)} \\ $$$$\mathrm{Simply}\:\mathrm{use}\:{t}={x}^{\mathrm{4}} \:\Rightarrow \\ $$$${I}=\frac{\mathrm{ln}\:\mid{x}\mid}{{a}}−\frac{\mathrm{ln}\:\mid{x}^{\mathrm{4}} +{a}\mid}{\mathrm{4}{a}}+{C} \\ $$

Commented by MM42 last updated on 24/Aug/23

a) (1/(x(x^4 −1)))=(a/x)+(b/(x−1))+(c/(x+1))+((dx+e)/(x^2 +1))  ⇒a=−1  , b=(1/4)  ,  c=(1/4)  ,  d=(1/2)  ,e=0  ⇒I=∫(−(1/x)+(1/(4(x−1)))+(1/(4(x+1)))+(x/(2(x^2 +1))))dx  =−lnx+(1/4)ln(x−1)+(1/4)ln(x+1)+(1/4)ln(x^2 +1)+c  =(1/4)ln(((x^4 −1)/x^4 ))+c  or   (1/(x(x^4 −1)))=−((x^4 −1+x^4 )/(x(x^4 −1)))=−(1/x)+(x^3 /(x^4 −1)) →....  b) (1/(x(x^4 +1)))=((x^4 +1−x^4 )/(x(x^4 +1)))=(1/x)−(x^3 /(x^4 +1))  ⇒I=lnx−(1/4)ln(x^4 +1)+c  =(1/4)ln((x^4 +1)/x^4 ) +c

$$\left.{a}\right)\:\frac{\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{1}\right)}=\frac{{a}}{{x}}+\frac{{b}}{{x}−\mathrm{1}}+\frac{{c}}{{x}+\mathrm{1}}+\frac{{dx}+{e}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{a}=−\mathrm{1}\:\:,\:{b}=\frac{\mathrm{1}}{\mathrm{4}}\:\:,\:\:{c}=\frac{\mathrm{1}}{\mathrm{4}}\:\:,\:\:{d}=\frac{\mathrm{1}}{\mathrm{2}}\:\:,{e}=\mathrm{0} \\ $$$$\Rightarrow{I}=\int\left(−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{4}\left({x}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{4}\left({x}+\mathrm{1}\right)}+\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\right){dx} \\ $$$$=−{lnx}+\frac{\mathrm{1}}{\mathrm{4}}{ln}\left({x}−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{4}}{ln}\left({x}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{4}}{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}^{\mathrm{4}} }\right)+{c} \\ $$$${or}\: \\ $$$$\frac{\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{1}\right)}=−\frac{{x}^{\mathrm{4}} −\mathrm{1}+{x}^{\mathrm{4}} }{{x}\left({x}^{\mathrm{4}} −\mathrm{1}\right)}=−\frac{\mathrm{1}}{{x}}+\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{4}} −\mathrm{1}}\:\rightarrow.... \\ $$$$\left.{b}\right)\:\frac{\mathrm{1}}{{x}\left({x}^{\mathrm{4}} +\mathrm{1}\right)}=\frac{{x}^{\mathrm{4}} +\mathrm{1}−{x}^{\mathrm{4}} }{{x}\left({x}^{\mathrm{4}} +\mathrm{1}\right)}=\frac{\mathrm{1}}{{x}}−\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{4}} +\mathrm{1}} \\ $$$$\Rightarrow{I}={lnx}−\frac{\mathrm{1}}{\mathrm{4}}{ln}\left({x}^{\mathrm{4}} +\mathrm{1}\right)+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{ln}\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} }\:+{c}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com