Question Number 196327 by pticantor last updated on 22/Aug/23 | ||
![]() | ||
$$\boldsymbol{{calcul}}\:\boldsymbol{{la}}\:\boldsymbol{{somme}}\:\boldsymbol{{suivante}}: \\ $$$$\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow+\infty} {\boldsymbol{{m}}}\:\underset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\overset{\mathrm{2}\boldsymbol{{n}}} {\sum}}\boldsymbol{{sin}}\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{k}}}\right) \\ $$$$\:\:\boldsymbol{{elrochi}} \\ $$ | ||
Answered by sniper237 last updated on 22/Aug/23 | ||
![]() | ||
$${for}\:{x}>\mathrm{0}\:,\:\:\:\mathrm{0}<{sinx}<{x}\:\Rightarrow\:\mathrm{1}β\frac{{x}^{\mathrm{2}} }{\mathrm{2}}<{cosx}<\mathrm{1} \\ $$$$\Rightarrow\:{x}β\frac{{x}^{\mathrm{3}} }{\mathrm{6}}<\:{sinx}<{x}.\:{Then}\:{for}\:{x}=\pi/{k} \\ $$$$\:\:\:\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\pi}{{k}}\:β\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\pi^{\mathrm{3}} }{{k}^{\mathrm{3}} }\:<\:\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}{sin}\left(\frac{\pi}{{k}}\right)<\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\pi}{{k}} \\ $$$$\underset{{n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }β\underset{{k}=\mathrm{1}} {\overset{{n}β\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:\underset{\infty} {\rightarrow}\:\zeta\left(\mathrm{3}\right)β\zeta\left(\mathrm{3}\right)=\mathrm{0} \\ $$$$\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:=\frac{\mathrm{1}}{{n}}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}}\:\underset{\infty} {\rightarrow}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}}\:={ln}\mathrm{2} \\ $$$$\:{gendarm}\:{theorem}\:\Rightarrow\:\:{Answer}=\pi{ln}\mathrm{2} \\ $$ | ||
Answered by witcher3 last updated on 22/Aug/23 | ||
![]() | ||
$$\mathrm{sin}\left(\mathrm{x}\right)=\mathrm{x}β\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}+\mathrm{c}\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\mathrm{x}β\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sin}\left(\mathrm{x}\right)\leqslant\mathrm{x} \\ $$$$\mathrm{this}\:\mathrm{solve}\:\mathrm{Quation} \\ $$$$\underset{\mathrm{n}} {\overset{\mathrm{2n}} {\sum}}\frac{\pi}{\mathrm{k}}=\pi\left(\mathrm{H}_{\mathrm{2n}} β\mathrm{H}_{\mathrm{n}β\mathrm{1}} \right)=\pi\left(\mathrm{H}_{\mathrm{2n}} β\mathrm{ln}\left(\mathrm{2n}\right)β\mathrm{H}_{\mathrm{n}β\mathrm{1}} +\mathrm{ln}\left(\mathrm{n}β\mathrm{1}\right)+\mathrm{ln}\left(\frac{\mathrm{2n}}{\mathrm{n}β\mathrm{1}}\right)\right) \\ $$$$\mathrm{H}_{\varphi\left(\mathrm{n}\right)} β\mathrm{ln}\left(\varphi\left(\mathrm{n}\right)\right)\rightarrow\gamma,\:\:\mathrm{Euler}\:\mathrm{Constante}\forall\varphi\:\mathrm{bijective}\:\mathbb{N}\overset{\varphi} {\rightarrow}\mathbb{N} \\ $$$$\mathrm{for}\:\mathrm{x}^{\mathrm{3}} \mathrm{therme} \\ $$$$\underset{\mathrm{k}=\mathrm{n}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{3}} }<\mathrm{n}.\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }<\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\rightarrow\mathrm{0}...\mathrm{Try}\:\mathrm{withe}\:\mathrm{This}\:\mathrm{Hint} \\ $$$$ \\ $$$$ \\ $$ | ||