Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196327 by pticantor last updated on 22/Aug/23

calcul la somme suivante:    lim_(nβ†’+∞)  Ξ£_(k=n) ^(2n) sin((𝛑/k))    elrochi

$$\boldsymbol{{calcul}}\:\boldsymbol{{la}}\:\boldsymbol{{somme}}\:\boldsymbol{{suivante}}: \\ $$$$\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow+\infty} {\boldsymbol{{m}}}\:\underset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\overset{\mathrm{2}\boldsymbol{{n}}} {\sum}}\boldsymbol{{sin}}\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{k}}}\right) \\ $$$$\:\:\boldsymbol{{elrochi}} \\ $$

Answered by sniper237 last updated on 22/Aug/23

for x>0 ,   0<sinx<x β‡’ 1βˆ’(x^2 /2)<cosx<1  β‡’ xβˆ’(x^3 /6)< sinx<x. Then for x=Ο€/k     Ξ£_(k=n) ^(2n) (Ο€/k) βˆ’Ξ£_(k=n) ^(2n) (Ο€^3 /k^3 ) < Ξ£_(k=n) ^(2n) sin((Ο€/k))<Ξ£_(k=n) ^(2n) (Ο€/k)  Ξ£_n ^(2n) (1/k^3 ) =Ξ£_(k=1) ^(2n) (1/k^3 )βˆ’Ξ£_(k=1) ^(nβˆ’1) (1/k^3 ) β†’_∞  ΞΆ(3)βˆ’ΞΆ(3)=0  Ξ£_(k=n) ^(2n) (1/k) =(1/n) Ξ£_(k=0) ^n (1/(1+(k/n))) β†’_∞  ∫_0 ^1 (dx/(1+x)) =ln2   gendarm theorem β‡’  Answer=Ο€ln2

$${for}\:{x}>\mathrm{0}\:,\:\:\:\mathrm{0}<{sinx}<{x}\:\Rightarrow\:\mathrm{1}βˆ’\frac{{x}^{\mathrm{2}} }{\mathrm{2}}<{cosx}<\mathrm{1} \\ $$$$\Rightarrow\:{x}βˆ’\frac{{x}^{\mathrm{3}} }{\mathrm{6}}<\:{sinx}<{x}.\:{Then}\:{for}\:{x}=\pi/{k} \\ $$$$\:\:\:\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\pi}{{k}}\:βˆ’\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\pi^{\mathrm{3}} }{{k}^{\mathrm{3}} }\:<\:\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}{sin}\left(\frac{\pi}{{k}}\right)<\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\pi}{{k}} \\ $$$$\underset{{n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }βˆ’\underset{{k}=\mathrm{1}} {\overset{{n}βˆ’\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:\underset{\infty} {\rightarrow}\:\zeta\left(\mathrm{3}\right)βˆ’\zeta\left(\mathrm{3}\right)=\mathrm{0} \\ $$$$\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:=\frac{\mathrm{1}}{{n}}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}}\:\underset{\infty} {\rightarrow}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}}\:={ln}\mathrm{2} \\ $$$$\:{gendarm}\:{theorem}\:\Rightarrow\:\:{Answer}=\pi{ln}\mathrm{2} \\ $$

Answered by witcher3 last updated on 22/Aug/23

sin(x)=xβˆ’(x^3 /6)+c(x^4 )  xβˆ’(x^3 /6)≀sin(x)≀x  this solve Quation  Ξ£_n ^(2n) (Ο€/k)=Ο€(H_(2n) βˆ’H_(nβˆ’1) )=Ο€(H_(2n) βˆ’ln(2n)βˆ’H_(nβˆ’1) +ln(nβˆ’1)+ln(((2n)/(nβˆ’1))))  H_(Ο•(n)) βˆ’ln(Ο•(n))β†’Ξ³,  Euler Constanteβˆ€Ο• bijective Nβ†’^Ο• N  for x^3 therme  Ξ£_(k=n) ^(2n) (1/k^3 )<n.(1/n^3 )<(1/n^2 )β†’0...Try withe This Hint

$$\mathrm{sin}\left(\mathrm{x}\right)=\mathrm{x}βˆ’\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}+\mathrm{c}\left(\mathrm{x}^{\mathrm{4}} \right) \\ $$$$\mathrm{x}βˆ’\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sin}\left(\mathrm{x}\right)\leqslant\mathrm{x} \\ $$$$\mathrm{this}\:\mathrm{solve}\:\mathrm{Quation} \\ $$$$\underset{\mathrm{n}} {\overset{\mathrm{2n}} {\sum}}\frac{\pi}{\mathrm{k}}=\pi\left(\mathrm{H}_{\mathrm{2n}} βˆ’\mathrm{H}_{\mathrm{n}βˆ’\mathrm{1}} \right)=\pi\left(\mathrm{H}_{\mathrm{2n}} βˆ’\mathrm{ln}\left(\mathrm{2n}\right)βˆ’\mathrm{H}_{\mathrm{n}βˆ’\mathrm{1}} +\mathrm{ln}\left(\mathrm{n}βˆ’\mathrm{1}\right)+\mathrm{ln}\left(\frac{\mathrm{2n}}{\mathrm{n}βˆ’\mathrm{1}}\right)\right) \\ $$$$\mathrm{H}_{\varphi\left(\mathrm{n}\right)} βˆ’\mathrm{ln}\left(\varphi\left(\mathrm{n}\right)\right)\rightarrow\gamma,\:\:\mathrm{Euler}\:\mathrm{Constante}\forall\varphi\:\mathrm{bijective}\:\mathbb{N}\overset{\varphi} {\rightarrow}\mathbb{N} \\ $$$$\mathrm{for}\:\mathrm{x}^{\mathrm{3}} \mathrm{therme} \\ $$$$\underset{\mathrm{k}=\mathrm{n}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{3}} }<\mathrm{n}.\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }<\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\rightarrow\mathrm{0}...\mathrm{Try}\:\mathrm{withe}\:\mathrm{This}\:\mathrm{Hint} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com