Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196324 by sonukgindia last updated on 22/Aug/23

Answered by sniper237 last updated on 22/Aug/23

a(22)−a(21)=3×21−1  a(21)−a(20)=3×20−1  ...  a(3)−a(2)=3×2−1  a(2)−a(1)=3×1−1  when adding member to member  a(22)−a(1)=3×((21×22)/2)−21

$${a}\left(\mathrm{22}\right)−{a}\left(\mathrm{21}\right)=\mathrm{3}×\mathrm{21}−\mathrm{1} \\ $$$${a}\left(\mathrm{21}\right)−{a}\left(\mathrm{20}\right)=\mathrm{3}×\mathrm{20}−\mathrm{1} \\ $$$$... \\ $$$${a}\left(\mathrm{3}\right)−{a}\left(\mathrm{2}\right)=\mathrm{3}×\mathrm{2}−\mathrm{1} \\ $$$${a}\left(\mathrm{2}\right)−{a}\left(\mathrm{1}\right)=\mathrm{3}×\mathrm{1}−\mathrm{1} \\ $$$${when}\:{adding}\:{member}\:{to}\:{member} \\ $$$${a}\left(\mathrm{22}\right)−{a}\left(\mathrm{1}\right)=\mathrm{3}×\frac{\mathrm{21}×\mathrm{22}}{\mathrm{2}}−\mathrm{21} \\ $$

Answered by mr W last updated on 22/Aug/23

a(k+1)=a(k)+3k−1  Σ_(k=1) ^n a(k+1)=Σ_(k=1) ^n a(k)+Σ_(k=1) ^n (3k−1)  Σ_(k=2) ^(n+1) a(k)=Σ_(k=1) ^n a(k)+Σ_(k=1) ^n (3k−1)  a(n+1)−a(1)+Σ_(k=1) ^n a(k)=Σ_(k=1) ^n a(k)+Σ_(k=1) ^n (3k−1)  a(n+1)−a(1)=Σ_(k=1) ^n (3k−1)  a(n+1)−8=3×((n(n+1))/2)−n  a(n+1)=((n(3n+1))/2)+8  ⇒a(n)=(((n−1)(3n−2))/2)+8  ⇒a(22)=((21×64)/2)+8=680

$${a}\left({k}+\mathrm{1}\right)={a}\left({k}\right)+\mathrm{3}{k}−\mathrm{1} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}\left({k}+\mathrm{1}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}\left({k}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{k}−\mathrm{1}\right) \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{a}\left({k}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}\left({k}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{k}−\mathrm{1}\right) \\ $$$${a}\left({n}+\mathrm{1}\right)−{a}\left(\mathrm{1}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}\left({k}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}\left({k}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{k}−\mathrm{1}\right) \\ $$$${a}\left({n}+\mathrm{1}\right)−{a}\left(\mathrm{1}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{k}−\mathrm{1}\right) \\ $$$${a}\left({n}+\mathrm{1}\right)−\mathrm{8}=\mathrm{3}×\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−{n} \\ $$$${a}\left({n}+\mathrm{1}\right)=\frac{{n}\left(\mathrm{3}{n}+\mathrm{1}\right)}{\mathrm{2}}+\mathrm{8} \\ $$$$\Rightarrow{a}\left({n}\right)=\frac{\left({n}−\mathrm{1}\right)\left(\mathrm{3}{n}−\mathrm{2}\right)}{\mathrm{2}}+\mathrm{8} \\ $$$$\Rightarrow{a}\left(\mathrm{22}\right)=\frac{\mathrm{21}×\mathrm{64}}{\mathrm{2}}+\mathrm{8}=\mathrm{680} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com