Question Number 196275 by AROUNAMoussa last updated on 21/Aug/23 | ||
Answered by MM42 last updated on 21/Aug/23 | ||
$$\langle{ABD}=\mathrm{35}\Rightarrow{AD}={AB} \\ $$$$\langle{BCD}=\mathrm{55} \\ $$$$\frac{{AB}}{{AC}}=\frac{{sinx}}{{sin}\mathrm{130}}\:\:\:\&\:\:\frac{{AD}}{{AC}}=\frac{{sin}\left(\mathrm{55}−{x}\right)}{{sin}\mathrm{65}} \\ $$$$\Rightarrow{sinx}×{sin}\mathrm{65}=\mathrm{2}{sin}\mathrm{65}×{cos}\mathrm{65}×{sin}\left(\mathrm{55}−{x}\right) \\ $$$$\Rightarrow{sinx}=\mathrm{2}{cos}\mathrm{65}{sin}\left(\mathrm{55}−{x}\right)={sin}\left(\mathrm{55}−{x}+\mathrm{65}\right)+{sin}\left(\mathrm{55}−{x}−\mathrm{65}\right) \\ $$$$\Rightarrow{sinx}={sin}\left(\mathrm{120}−{x}\right)−{sin}\left({x}+\mathrm{10}\right) \\ $$$$\Rightarrow{sinx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cosx}−\frac{\mathrm{1}}{\mathrm{2}}{sinx}−{cos}\mathrm{10}{sinx}−{sin}\mathrm{10}{cosx} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}−{cos}\mathrm{10}\right){sinx}=\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−{sin}\mathrm{10}\right){cosx} \\ $$$${tanx}=\frac{\sqrt{\mathrm{3}}−\mathrm{2}{sin}\mathrm{10}}{\mathrm{3}−\mathrm{2}{cos}\mathrm{10}} \\ $$$$\:\Rightarrow{x}={tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}}−\mathrm{2}{sin}\mathrm{10}}{\mathrm{3}−\mathrm{2}{cos}\mathrm{10}}\right)\sim\mathrm{53}^{{o}} \\ $$$$ \\ $$$$ \\ $$ | ||
Commented by AROUNAMoussa last updated on 21/Aug/23 | ||
$${Merci}\:{bcp}\:! \\ $$ | ||