Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196173 by pticantor last updated on 19/Aug/23

Calcul I_a =∫_a ^(1/a) ((lnx)/(1+x^2 ))dx (a>0)

$$\boldsymbol{{Calcul}}\:\boldsymbol{{I}}_{\boldsymbol{{a}}} =\int_{\boldsymbol{{a}}} ^{\frac{\mathrm{1}}{\boldsymbol{{a}}}} \frac{\boldsymbol{{lnx}}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}\:\left(\boldsymbol{{a}}>\mathrm{0}\right)\: \\ $$

Answered by Erico last updated on 19/Aug/23

 J_a = ∫^( a) _( 1) ((lnx)/(1+x^2 ))dx  ⇒ I_a = J_(1/a) −J_a   posons x=(1/t) ⇒ dx=−(1/t^2 )dt   J_(1/a) = ∫^( a) _( 1) ((−lnt)/(1+(1/t^2 )))(−(1/t^2 )dt)=∫^( a) _( 1) ((lnt)/(1+t^2 ))dt  ⇒ J_(1/a) =J_a  ⇔ I_a =0

$$\:\mathrm{J}_{{a}} =\:\underset{\:\mathrm{1}} {\int}^{\:{a}} \frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\:\mathrm{I}_{{a}} =\:\mathrm{J}_{\frac{\mathrm{1}}{{a}}} −\mathrm{J}_{{a}} \\ $$$${posons}\:{x}=\frac{\mathrm{1}}{{t}}\:\Rightarrow\:{dx}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$$\:\mathrm{J}_{\frac{\mathrm{1}}{{a}}} =\:\underset{\:\mathrm{1}} {\int}^{\:{a}} \frac{−{lnt}}{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}\left(−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt}\right)=\underset{\:\mathrm{1}} {\int}^{\:{a}} \frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\Rightarrow\:\mathrm{J}_{\frac{\mathrm{1}}{{a}}} =\mathrm{J}_{{a}} \:\Leftrightarrow\:\mathrm{I}_{{a}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com