Question Number 196086 by MM42 last updated on 17/Aug/23 | ||
$${Answer}\:{to}\:{the}\:{question}\:``\mathrm{196008}'' \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{tan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={n}\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$$\left.{Ans}\right) \\ $$$${according}\:\:``{de}\:{moivre}'' \\ $$$${sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\alpha=\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\left({cos}\alpha\right)^{\mathrm{2}{n}} {sin}\alpha−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix}\left({cos}\alpha\right)^{\mathrm{2}{n}−\mathrm{2}} \left({sin}\alpha\right)^{\mathrm{3}} +.... \\ $$$$=\left({cos}\alpha\right)^{\mathrm{2}{n}} \left({sin}\alpha\right)\left[\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:{tan}^{\mathrm{2}} \alpha+...\right] \\ $$$${for}\:\:``\alpha_{{k}} =\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\:\:\:\:\:;\:\:\mathrm{1}\leqslant{k}\leqslant{n}\:\Rightarrow{sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\alpha_{{k}} =\mathrm{0} \\ $$$$\Rightarrow\forall\:\:\mathrm{1}\leqslant{k}\leqslant{n}\rightarrow\:\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{1}}\end{pmatrix}−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:{tan}^{\mathrm{2}} \alpha_{{k}} +...=\mathrm{0} \\ $$$${therefore}\:\:``\:{x}_{{k}} ={tan}^{\mathrm{2}} \alpha_{{k}} \:''\:{thr}\:{roots}\:{of}\:\:{the}\:{equation}\:{are}\:{blowe} \\ $$$${x}^{{n}} −\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{1}}\end{pmatrix}\:{x}^{{n}} +\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{3}}\end{pmatrix}{x}^{{n}−\mathrm{1}} −...=\mathrm{0} \\ $$$${the}\:{sume}\:{of}\:{the}\:{roots}\:{of}\:{the}\:{equation}\:{is}\:``\:{s}=\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{1}}\end{pmatrix}\:'' \\ $$$$\Rightarrow{s}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:{tan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={n}\left(\mathrm{2}{n}+\mathrm{1}\right)\checkmark \\ $$$${the}\:{proof}\:{of}\:{the}\:{seconf}\:{part}\:{is}\:{done}\:{similarly} \\ $$$$ \\ $$$$ \\ $$ | ||