Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196062 by qaz last updated on 17/Aug/23

Σ_(i=1) ^n Σ_(j=1) ^n [gcd(i,j)=1]=?         ,[D]= { ((1,   D is ture.)),((0,    D is false.   )) :}

$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{gcd}\left({i},{j}\right)=\mathrm{1}\right]=?\:\:\:\:\:\:\:\:\:,\left[{D}\right]=\begin{cases}{\mathrm{1},\:\:\:{D}\:{is}\:{ture}.}\\{\mathrm{0},\:\:\:\:{D}\:{is}\:{false}.\:\:\:}\end{cases} \\ $$

Commented by mr W last updated on 17/Aug/23

i don′t think we can get it in a closed  form.  n=10: ⇒63  n=100: ⇒6087  n=1000: ⇒808383

$${i}\:{don}'{t}\:{think}\:{we}\:{can}\:{get}\:{it}\:{in}\:{a}\:{closed} \\ $$$${form}. \\ $$$${n}=\mathrm{10}:\:\Rightarrow\mathrm{63} \\ $$$${n}=\mathrm{100}:\:\Rightarrow\mathrm{6087} \\ $$$${n}=\mathrm{1000}:\:\Rightarrow\mathrm{808383} \\ $$

Answered by witcher3 last updated on 17/Aug/23

A_n =Σ_(i,j≤n) [gcd(i,j)=1]  A_(n+1) =Σ_(i,j≤n+1) [gcd(i,j)=1]  =A_n +2Σ_(m=1) ^(n+1) [gcd(n+1,m)]  =A_n +2ϕ(n+1)..ϕ euler indecatrice function  ϕ(n)=card(i,gcd(i,n)=1)  ⇒A_(n+1) −A_n =2ϕ(n+1)  ⇒Σ_(k=1) ^(n−1) A_(k+1) −A_k =2Σ_(k=1) ^(n−1) ϕ(k+1),n≥2  ⇒A_n −A_1 =2Σ_(k=1) ^(n−1) ϕ(k)  A_n =1+2Σ_(k=1) ^(n−1) ϕ(k)

$$\mathrm{A}_{\mathrm{n}} =\underset{\mathrm{i},\mathrm{j}\leqslant\mathrm{n}} {\sum}\left[\mathrm{gcd}\left(\mathrm{i},\mathrm{j}\right)=\mathrm{1}\right] \\ $$$$\mathrm{A}_{\mathrm{n}+\mathrm{1}} =\underset{\mathrm{i},\mathrm{j}\leqslant\mathrm{n}+\mathrm{1}} {\sum}\left[\mathrm{gcd}\left(\mathrm{i},\mathrm{j}\right)=\mathrm{1}\right] \\ $$$$=\mathrm{A}_{\mathrm{n}} +\mathrm{2}\underset{\mathrm{m}=\mathrm{1}} {\overset{\mathrm{n}+\mathrm{1}} {\sum}}\left[\mathrm{gcd}\left(\mathrm{n}+\mathrm{1},\mathrm{m}\right)\right] \\ $$$$=\mathrm{A}_{\mathrm{n}} +\mathrm{2}\varphi\left(\mathrm{n}+\mathrm{1}\right)..\varphi\:\mathrm{euler}\:\mathrm{indecatrice}\:\mathrm{function} \\ $$$$\varphi\left(\mathrm{n}\right)=\mathrm{card}\left(\mathrm{i},\mathrm{gcd}\left(\mathrm{i},\mathrm{n}\right)=\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{A}_{\mathrm{n}+\mathrm{1}} −\mathrm{A}_{\mathrm{n}} =\mathrm{2}\varphi\left(\mathrm{n}+\mathrm{1}\right) \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{A}_{\mathrm{k}+\mathrm{1}} −\mathrm{A}_{\mathrm{k}} =\mathrm{2}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\varphi\left(\mathrm{k}+\mathrm{1}\right),\mathrm{n}\geqslant\mathrm{2} \\ $$$$\Rightarrow\mathrm{A}_{\mathrm{n}} −\mathrm{A}_{\mathrm{1}} =\mathrm{2}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\varphi\left(\mathrm{k}\right) \\ $$$$\mathrm{A}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\varphi\left(\mathrm{k}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com