Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196049 by CrispyXYZ last updated on 17/Aug/23

a, b, c > 0. Find the min value of  Σ_(cyc)  (√((a+b)/(a+b+c))) .

$${a},\:{b},\:{c}\:>\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{\mathrm{cyc}} {\sum}\:\sqrt{\frac{{a}+{b}}{{a}+{b}+{c}}}\:. \\ $$

Commented by Frix last updated on 17/Aug/23

b=pa∧c=qa  Σ=(((√(p+1))+(√(p+q))+(√(q+1)))/( (√(p+q+1))))  Σ=2; q=(1/p)∧p→∞  Σ=(√6); p=q=1  ⇒  2<Σ≤(√6)

$${b}={pa}\wedge{c}={qa} \\ $$$$\Sigma=\frac{\sqrt{{p}+\mathrm{1}}+\sqrt{{p}+{q}}+\sqrt{{q}+\mathrm{1}}}{\:\sqrt{{p}+{q}+\mathrm{1}}} \\ $$$$\Sigma=\mathrm{2};\:{q}=\frac{\mathrm{1}}{{p}}\wedge{p}\rightarrow\infty \\ $$$$\Sigma=\sqrt{\mathrm{6}};\:{p}={q}=\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{2}<\Sigma\leqslant\sqrt{\mathrm{6}} \\ $$

Answered by mr W last updated on 17/Aug/23

S=(((√(a+b))+(√(b+c))+(√(c+a)))/( (√(a+b+c))))  =(((√2)((√(a+b))+(√(b+c))+(√(c+a))))/( (√(2(a+b+c)))))  =(((√2)((√(a+b))+(√(b+c))+(√(c+a))))/( (√((a+b)+(b+c)+(c+a)))))  =(((√2)(x+y+z))/( (√(x^2 +y^2 +z^2 )))) (with x=(√(a+b))>0...)  =(((√6)(1×x+1×y+1×z))/( (√3)×(√(x^2 +y^2 +z^2 ))))  =(√6) cos θ  θ=angle between vectors (1,1,1) and (x,y,z)  0≤θ<cos^(−1) (√(2/3))  ⇒2<S≤(√6)  mininum doesn′t exist.

$${S}=\frac{\sqrt{{a}+{b}}+\sqrt{{b}+{c}}+\sqrt{{c}+{a}}}{\:\sqrt{{a}+{b}+{c}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}\left(\sqrt{{a}+{b}}+\sqrt{{b}+{c}}+\sqrt{{c}+{a}}\right)}{\:\sqrt{\mathrm{2}\left({a}+{b}+{c}\right)}} \\ $$$$=\frac{\sqrt{\mathrm{2}}\left(\sqrt{{a}+{b}}+\sqrt{{b}+{c}}+\sqrt{{c}+{a}}\right)}{\:\sqrt{\left({a}+{b}\right)+\left({b}+{c}\right)+\left({c}+{a}\right)}} \\ $$$$=\frac{\sqrt{\mathrm{2}}\left({x}+{y}+{z}\right)}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\:\left({with}\:{x}=\sqrt{{a}+{b}}>\mathrm{0}...\right) \\ $$$$=\frac{\sqrt{\mathrm{6}}\left(\mathrm{1}×{x}+\mathrm{1}×{y}+\mathrm{1}×{z}\right)}{\:\sqrt{\mathrm{3}}×\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$=\sqrt{\mathrm{6}}\:\mathrm{cos}\:\theta \\ $$$$\theta={angle}\:{between}\:{vectors}\:\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:{and}\:\left({x},{y},{z}\right) \\ $$$$\mathrm{0}\leqslant\theta<\mathrm{cos}^{−\mathrm{1}} \sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\Rightarrow\mathrm{2}<{S}\leqslant\sqrt{\mathrm{6}} \\ $$$${mininum}\:{doesn}'{t}\:{exist}. \\ $$

Commented by mr W last updated on 18/Aug/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com