Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 195885 by cortano12 last updated on 12/Aug/23

    (dy/dx) + (√((1−y^2 )/(1−x^2 ))) = 0

$$\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\sqrt{\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:=\:\mathrm{0}\: \\ $$

Answered by mokys last updated on 12/Aug/23

(dy/( (√(1−y^2 )))) + (dx/( (√(1−x^2 )))) = d(0)    sin^(−1) (y)+sin^(−1) (x) = c

$$\frac{{dy}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:+\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\:{d}\left(\mathrm{0}\right) \\ $$$$ \\ $$$${sin}^{−\mathrm{1}} \left({y}\right)+{sin}^{−\mathrm{1}} \left({x}\right)\:=\:{c} \\ $$

Answered by BaliramKumar last updated on 12/Aug/23

x(√(1−y^2 )) + y(√(1−x^2 )) = C

$${x}\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:+\:{y}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:=\:\mathrm{C} \\ $$$$ \\ $$

Commented by mokys last updated on 12/Aug/23

false solution

$${false}\:{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com