Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195820 by York12 last updated on 11/Aug/23

a,b,c>0 &abc=1,prove that  (1/(1+a+b))+(1/(1+b+c))+(1/(1+c+a))≤1

$${a},{b},{c}>\mathrm{0}\:\&{abc}=\mathrm{1},{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}+\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}+\frac{\mathrm{1}}{\mathrm{1}+{c}+{a}}\leqslant\mathrm{1} \\ $$

Answered by CrispyXYZ last updated on 12/Aug/23

let a=x^3 , b=y^3 , c=z^3 , then xyz=1.  x^3 +y^3 −x^2 y−y^2 x=(x−y)^2 (x+y)≥0  ⇒x^3 +y^3 ≥x^2 y+y^2 x  (1/(1+a+b))=(1/(1+x^3 +y^3 ))  ≤(1/(1+x^2 y+y^2 x))  =(1/(xyz+x^2 y+y^2 x))=(1/(xy(x+y+z)))=(z/(x+y+z))  Similarly,  (1/(1+b+c))≤(x/(x+y+z)),  (1/(1+c+a))≤(y/(x+y+z)).  In conclusion,  (1/(1+a+b))+(1/(1+b+c))+(1/(1+a+c))≤((x+y+z)/(x+y+z))=1

$$\mathrm{let}\:{a}={x}^{\mathrm{3}} ,\:{b}={y}^{\mathrm{3}} ,\:{c}={z}^{\mathrm{3}} ,\:\mathrm{then}\:{xyz}=\mathrm{1}. \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} −{x}^{\mathrm{2}} {y}−{y}^{\mathrm{2}} {x}=\left({x}−{y}\right)^{\mathrm{2}} \left({x}+{y}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{3}} +{y}^{\mathrm{3}} \geqslant{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {x} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} +{y}^{\mathrm{3}} } \\ $$$$\leqslant\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {x}} \\ $$$$=\frac{\mathrm{1}}{{xyz}+{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {x}}=\frac{\mathrm{1}}{{xy}\left({x}+{y}+{z}\right)}=\frac{{z}}{{x}+{y}+{z}} \\ $$$$\mathrm{Similarly}, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}\leqslant\frac{{x}}{{x}+{y}+{z}},\:\:\frac{\mathrm{1}}{\mathrm{1}+{c}+{a}}\leqslant\frac{{y}}{{x}+{y}+{z}}. \\ $$$$\mathrm{In}\:\mathrm{conclusion}, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}+\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}+\frac{\mathrm{1}}{\mathrm{1}+{a}+{c}}\leqslant\frac{{x}+{y}+{z}}{{x}+{y}+{z}}=\mathrm{1} \\ $$

Commented by York12 last updated on 13/Aug/23

tbanks

$${tbanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com