Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 195619 by cortano12 last updated on 06/Aug/23

$$\:\:\:\cancel{\underline{\underbrace{ }}} \\ $$

Answered by MM42 last updated on 06/Aug/23

∞

$$\infty \\ $$

Answered by dimentri last updated on 06/Aug/23

  lim_(x→0^− )  (((x+2−2((1+sin x))^(1/3)  cos x)/x^2 ) )=−∞    lim_(x→0^+ )  (((x+2−2((1+sin x))^(1/3)  cos x)/x^2 ))=∞    so lim_(x→0)  (((x+2−2((1+sin x))^(1/3)  cos x)/x^2 ) )    doesnot exist

$$\:\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\left(\frac{{x}+\mathrm{2}−\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:{x}}\:\mathrm{cos}\:{x}}{{x}^{\mathrm{2}} }\:\right)=−\infty \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\frac{{x}+\mathrm{2}−\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:{x}}\:\mathrm{cos}\:{x}}{{x}^{\mathrm{2}} }\right)=\infty \\ $$$$\:\:\mathrm{so}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{x}+\mathrm{2}−\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\:\right) \\ $$$$\:\:\mathrm{doesnot}\:\mathrm{exist}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com