Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195540 by 073 last updated on 04/Aug/23

Commented by Frix last updated on 04/Aug/23

i) 1  ii) 1  iii) 1

$$\left.{i}\right)\:\mathrm{1} \\ $$$$\left.{ii}\right)\:\mathrm{1} \\ $$$$\left.{iii}\right)\:\mathrm{1} \\ $$

Commented by 073 last updated on 04/Aug/23

prove please?

$$\mathrm{prove}\:\mathrm{please}? \\ $$

Answered by MM42 last updated on 05/Aug/23

lnΩ=lim_(x→0^+ )  ((lnx)/(1/x))  =^(hop)   lim_(x→0^+ )   ((1/x)/(−(1/x^2 ))) =0⇒Ω=1  the rest is similar  to the same metod

$${ln}\Omega={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\frac{{lnx}}{\frac{\mathrm{1}}{{x}}}\:\:\overset{{hop}} {=}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{\frac{\mathrm{1}}{{x}}}{−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:=\mathrm{0}\Rightarrow\Omega=\mathrm{1} \\ $$$${the}\:{rest}\:{is}\:{similar}\:\:{to}\:{the}\:{same}\:{metod} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com