Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 195520 by moh777 last updated on 04/Aug/23

        find domine and range of function        f(x,y) = (√((x+y^2 )/(x^2 +y^2 −4)))

$$\: \\ $$$$\:\:\:\:\:{find}\:{domine}\:{and}\:{range}\:{of}\:{function}\: \\ $$$$\:\:\:\:\:{f}\left({x},{y}\right)\:=\:\sqrt{\frac{{x}+{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}}} \\ $$$$ \\ $$$$ \\ $$

Answered by MM42 last updated on 04/Aug/23

D_f ⊆R^2     if  A={(x,y)∣ x+y^2 <0}   &   B={(x,y)∣ x^2 +y^2 <4 }  ⇒D_f  = R^2 −(A−B)∪(B−A)

$${D}_{{f}} \subseteq\mathbb{R}^{\mathrm{2}} \:\: \\ $$$${if}\:\:{A}=\left\{\left({x},{y}\right)\mid\:{x}+{y}^{\mathrm{2}} <\mathrm{0}\right\}\:\:\:\&\:\:\:{B}=\left\{\left({x},{y}\right)\mid\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} <\mathrm{4}\:\right\} \\ $$$$\Rightarrow{D}_{{f}} \:=\:\mathbb{R}^{\mathrm{2}} −\left({A}−{B}\right)\cup\left({B}−{A}\right) \\ $$

Answered by witcher3 last updated on 04/Aug/23

(x,y)→((x+y^2 )/(x^2 +y^2 −4)) is continus  (x,y)=(rcos(a),rsin(a))  r∈[0,∞[ ,a∈[0,2π]r  f(x,y)=f(rcos(a),rsin(a))=g(r,a)  =(√((rcos(a)+r^2 sin^2 (a))/(r^2 −4)))  for r>2,a∈[0,(π/2)] g is well defind  g(0,0  lim_(r→∞) g(r,a)=0  lim_(r→2^+ ) g(r,a)=+∞  ⇒range f is ]0,+∞[  0=g(0,a) range is [0,∞[

$$\left(\mathrm{x},\mathrm{y}\right)\rightarrow\frac{\mathrm{x}+\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4}}\:\mathrm{is}\:\mathrm{continus} \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{rcos}\left(\mathrm{a}\right),\mathrm{rsin}\left(\mathrm{a}\right)\right) \\ $$$$\mathrm{r}\in\left[\mathrm{0},\infty\left[\:,\mathrm{a}\in\left[\mathrm{0},\mathrm{2}\pi\right]\mathrm{r}\right.\right. \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{f}\left(\mathrm{rcos}\left(\mathrm{a}\right),\mathrm{rsin}\left(\mathrm{a}\right)\right)=\mathrm{g}\left(\mathrm{r},\mathrm{a}\right) \\ $$$$=\sqrt{\frac{\mathrm{rcos}\left(\mathrm{a}\right)+\mathrm{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\mathrm{a}\right)}{\mathrm{r}^{\mathrm{2}} −\mathrm{4}}} \\ $$$$\mathrm{for}\:\mathrm{r}>\mathrm{2},\mathrm{a}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:\mathrm{g}\:\mathrm{is}\:\mathrm{well}\:\mathrm{defind} \\ $$$$\mathrm{g}\left(\mathrm{0},\mathrm{0}\right. \\ $$$$\underset{\mathrm{r}\rightarrow\infty} {\mathrm{lim}g}\left(\mathrm{r},\mathrm{a}\right)=\mathrm{0} \\ $$$$\underset{\mathrm{r}\rightarrow\mathrm{2}^{+} } {\mathrm{lim}g}\left(\mathrm{r},\mathrm{a}\right)=+\infty \\ $$$$\left.\Rightarrow\mathrm{range}\:\mathrm{f}\:\mathrm{is}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$$\mathrm{0}=\mathrm{g}\left(\mathrm{0},\mathrm{a}\right)\:\mathrm{range}\:\mathrm{is}\:\left[\mathrm{0},\infty\left[\right.\right. \\ $$

Answered by Frix last updated on 04/Aug/23

f(x, y) defined for x, y ∈R with  (y<−(√(4−x^2 ))∨y>(√(4−x^2 )))∧(x≥0∨(x<0∧(y≤−(√(−x))∨y≥(√(−x))))  0≤f(x, y)<+∞

$${f}\left({x},\:{y}\right)\:\mathrm{defined}\:\mathrm{for}\:{x},\:{y}\:\in\mathbb{R}\:\mathrm{with} \\ $$$$\left({y}<−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\vee{y}>\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\right)\wedge\left({x}\geqslant\mathrm{0}\vee\left({x}<\mathrm{0}\wedge\left({y}\leqslant−\sqrt{−{x}}\vee{y}\geqslant\sqrt{−{x}}\right)\right)\right. \\ $$$$\mathrm{0}\leqslant{f}\left({x},\:{y}\right)<+\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com