Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 195287 by Mingma last updated on 29/Jul/23

Answered by MM42 last updated on 29/Jul/23

CD=DE⇒∠C2=∠E   & ∠D1+∠E=60  ∠C1=60−∠C2=60−∠E=∠D1  ((CD)/(Sin60))=(2/(SinC1))  &  ((DE)/(Sin120))=((BE)/(SinD1))  (2/(SinC1))=((BE)/(SinD1))⇒BE=2 ✓

$${CD}={DE}\Rightarrow\angle{C}\mathrm{2}=\angle{E}\:\:\:\&\:\angle{D}\mathrm{1}+\angle{E}=\mathrm{60} \\ $$$$\angle{C}\mathrm{1}=\mathrm{60}−\angle{C}\mathrm{2}=\mathrm{60}−\angle{E}=\angle{D}\mathrm{1} \\ $$$$\frac{{CD}}{{Sin}\mathrm{60}}=\frac{\mathrm{2}}{{SinC}\mathrm{1}}\:\:\&\:\:\frac{{DE}}{{Sin}\mathrm{120}}=\frac{{BE}}{{SinD}\mathrm{1}} \\ $$$$\frac{\mathrm{2}}{{SinC}\mathrm{1}}=\frac{{BE}}{{SinD}\mathrm{1}}\Rightarrow{BE}=\mathrm{2}\:\checkmark \\ $$

Answered by ajfour last updated on 29/Jul/23

side AB=s  AD=a  , BE=x=?  CD^2 =(3/4)s^2 +((s/2)−a)^2   (((s+x)/2))^2 +(3/4)(s−a)^2 =DE^( 2)   since  DE=CD  s^2 −as+a^2 =s^2 +(x^2 /4)+((sx)/2)−((3as)/2)+(3/4)a^2   ⇒  (x^2 /4)+((sx)/2)=(a^2 /4)+((sa)/2)  ⇒  (x+s)^2 =(a+s)^2    x=a   (here a=2)

$${side}\:{AB}={s} \\ $$$${AD}={a}\:\:,\:{BE}={x}=? \\ $$$${CD}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}{s}^{\mathrm{2}} +\left(\frac{{s}}{\mathrm{2}}−{a}\right)^{\mathrm{2}} \\ $$$$\left(\frac{{s}+{x}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\left({s}−{a}\right)^{\mathrm{2}} ={DE}^{\:\mathrm{2}} \\ $$$${since}\:\:{DE}={CD} \\ $$$${s}^{\mathrm{2}} −{as}+{a}^{\mathrm{2}} ={s}^{\mathrm{2}} +\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{sx}}{\mathrm{2}}−\frac{\mathrm{3}{as}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}{a}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{sx}}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{{sa}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left({x}+{s}\right)^{\mathrm{2}} =\left({a}+{s}\right)^{\mathrm{2}} \\ $$$$\:{x}={a}\:\:\:\left({here}\:{a}=\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com