Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195253 by Spillover last updated on 28/Jul/23

If 10sin^4 x+15cos^4 x=6.  find the value of  27cosec^6 x+8sec^6 x

$${If}\:\mathrm{10sin}\:^{\mathrm{4}} {x}+\mathrm{15cos}\:^{\mathrm{4}} {x}=\mathrm{6}. \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$$\mathrm{27cosec}\:^{\mathrm{6}} {x}+\mathrm{8sec}\:^{\mathrm{6}} {x} \\ $$$$ \\ $$

Commented by Frix last updated on 28/Jul/23

250

$$\mathrm{250} \\ $$

Answered by BaliramKumar last updated on 28/Jul/23

10sin^4 x + 15cos^4 x = 6  ((10)/6)sin^4 x + ((15)/6)cos^4 x = 1  (5/3)sin^4 x + (5/2)cos^4 x = 1  ((5/3)sin^2 x)∙sin^2 x + ((5/2)cos^2 x)∙cos^2 x = 1  ((5/3)sin^2 x) = 1   &  ((5/2)cos^2 x) = 1  ((5/3)) = (1/(sin^2 x))   &  ((5/2)) = (1/(cos^2 x))  ((5/3)) = cosec^2 x   &  ((5/2)) = sec^2 x    27cosec^6 x + 8sec^6 x  27((5/3))^3  + 8((5/2))^3  = 27(((125)/(27))) + 8(((125)/8))  125 + 125 = 250

$$\mathrm{10sin}^{\mathrm{4}} \mathrm{x}\:+\:\mathrm{15cos}^{\mathrm{4}} \mathrm{x}\:=\:\mathrm{6} \\ $$$$\frac{\mathrm{10}}{\mathrm{6}}\mathrm{sin}^{\mathrm{4}} \mathrm{x}\:+\:\frac{\mathrm{15}}{\mathrm{6}}\mathrm{cos}^{\mathrm{4}} \mathrm{x}\:=\:\mathrm{1} \\ $$$$\frac{\mathrm{5}}{\mathrm{3}}\mathrm{sin}^{\mathrm{4}} \mathrm{x}\:+\:\frac{\mathrm{5}}{\mathrm{2}}\mathrm{cos}^{\mathrm{4}} \mathrm{x}\:=\:\mathrm{1} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{3}}\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)\centerdot\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:+\:\left(\frac{\mathrm{5}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)\centerdot\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:=\:\mathrm{1} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{3}}\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)\:=\:\mathrm{1}\:\:\:\&\:\:\left(\frac{\mathrm{5}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)\:=\:\mathrm{1} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\:\:\:\&\:\:\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{3}}\right)\:=\:\mathrm{cosec}^{\mathrm{2}} \mathrm{x}\:\:\:\&\:\:\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\:=\:\mathrm{sec}^{\mathrm{2}} \mathrm{x} \\ $$$$ \\ $$$$\mathrm{27cosec}^{\mathrm{6}} \mathrm{x}\:+\:\mathrm{8sec}^{\mathrm{6}} \mathrm{x} \\ $$$$\mathrm{27}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\mathrm{3}} \:+\:\mathrm{8}\left(\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{3}} \:=\:\mathrm{27}\left(\frac{\mathrm{125}}{\mathrm{27}}\right)\:+\:\mathrm{8}\left(\frac{\mathrm{125}}{\mathrm{8}}\right) \\ $$$$\mathrm{125}\:+\:\mathrm{125}\:=\:\mathrm{250} \\ $$

Commented by Spillover last updated on 03/Aug/23

thank you

$${thank}\:{you} \\ $$

Answered by Spillover last updated on 02/Aug/23

10sin^4 x+15cos^4 x=6  divide by cos^4 x both sides  10tan^4 x+15=6sec^4 x  10tan ^4 x+15=6(1+tan^2 x)^2   4tan^4 x−12tan^2 x+9=0  (2tan^2 x−3)^2 =0  tan^2 x=(3/2)                  cot^2 x=(2/3)  27cosec^6 x+8sec^6 x  27(1+cot^2 x)^3 +8(1+tan^2 x)^3   but  tan^2 x=(3/2)                  cot^2 x=(2/3)  27(1+(2/3))^3 +8(1+(3/2))^3   27((5/3))^3 +8((5/2))^3   250

$$\mathrm{10sin}\:^{\mathrm{4}} {x}+\mathrm{15cos}\:^{\mathrm{4}} {x}=\mathrm{6} \\ $$$${divide}\:{by}\:{cos}^{\mathrm{4}} {x}\:{both}\:{sides} \\ $$$$\mathrm{10tan}\:^{\mathrm{4}} {x}+\mathrm{15}=\mathrm{6sec}\:^{\mathrm{4}} {x} \\ $$$$\mathrm{10tan}\overset{\mathrm{4}} {\:}{x}+\mathrm{15}=\mathrm{6}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)^{\mathrm{2}} \\ $$$$\mathrm{4tan}\:^{\mathrm{4}} {x}−\mathrm{12tan}\:^{\mathrm{2}} {x}+\mathrm{9}=\mathrm{0} \\ $$$$\left(\mathrm{2tan}\:^{\mathrm{2}} {x}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} {x}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cot}\:^{\mathrm{2}} {x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{27cosec}\:^{\mathrm{6}} {x}+\mathrm{8sec}\:^{\mathrm{6}} {x} \\ $$$$\mathrm{27}\left(\mathrm{1}+\mathrm{cot}\:^{\mathrm{2}} {x}\right)^{\mathrm{3}} +\mathrm{8}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)^{\mathrm{3}} \\ $$$${but}\:\:\mathrm{tan}\:^{\mathrm{2}} {x}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cot}\:^{\mathrm{2}} {x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{27}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} +\mathrm{8}\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$$$\mathrm{27}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\mathrm{3}} +\mathrm{8}\left(\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$$$\mathrm{250} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com