Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 195203 by Erico last updated on 27/Jul/23

Calculer ∫^( +∞) _( 0) (dt/((e^t −e^(−t) )^2 +a^2 ))

$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\mathrm{dt}}{\left(\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} \right)^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} } \\ $$

Answered by Frix last updated on 27/Jul/23

∫_0 ^∞ (dt/((e^t −e^(−t) )^2 +a^2 )) =^([u=e^(2t) ])   =(1/2)∫_1 ^∞ (du/(u^2 +(a^2 −2)u+1))=  =(1/(2a(√(a^2 −4))))[ln ∣((2u+a^2 −2+a(√(a^2 −4)))/(2u+a^2 −2−a(√(a^2 −4))))∣]_1 ^∞ =  =(1/(2a(√(a^2 −4))))ln ∣((a−(√(a^2 −4)))/(a+(√(a^2 −4))))∣

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{\left(\mathrm{e}^{{t}} −\mathrm{e}^{−{t}} \right)^{\mathrm{2}} +{a}^{\mathrm{2}} }\:\overset{\left[{u}=\mathrm{e}^{\mathrm{2}{t}} \right]} {=} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{du}}{{u}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −\mathrm{2}\right){u}+\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}\left[\mathrm{ln}\:\mid\frac{\mathrm{2}{u}+{a}^{\mathrm{2}} −\mathrm{2}+{a}\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}{u}+{a}^{\mathrm{2}} −\mathrm{2}−{a}\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}\mid\right]_{\mathrm{1}} ^{\infty} = \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}\mathrm{ln}\:\mid\frac{{a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{{a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}\mid \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com