Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 195180 by mustafazaheen last updated on 26/Jul/23

  1.    f(x)= { ((sinx      ,    (π/2)<x≤2π)),((cosx      ,     0≤x≤(π/2))) :}  then find the f^′ ((π/2)) =?  2.     f(x)= { ((sinx      ,    (π/2)<x≤2π)),((cosx      ,     0≤x≤(π/2))) :}  then find the f′(2π) =?

$$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$

Answered by mathlove last updated on 26/Jul/23

f^′ (x)= { ((cosx)),((−sinx)) :}  f^′ ((π/2))=−sin(π/2)=−1  f^′ (2π)=cos2π=1

$${f}^{'} \left({x}\right)=\begin{cases}{{cosx}}\\{−{sinx}}\end{cases} \\ $$$${f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)=−{sin}\frac{\pi}{\mathrm{2}}=−\mathrm{1} \\ $$$${f}^{'} \left(\mathrm{2}\pi\right)={cos}\mathrm{2}\pi=\mathrm{1} \\ $$

Commented by MM42 last updated on 26/Jul/23

The function is not continuouse  in  x=(π/2).therefore it is not differentiable in x=(π/2)

$${The}\:{function}\:{is}\:{not}\:{continuouse}\:\:{in} \\ $$$${x}=\frac{\pi}{\mathrm{2}}.{therefore}\:{it}\:{is}\:{not}\:{differentiable}\:{in}\:{x}=\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com