Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 195178 by Shlock last updated on 26/Jul/23

Answered by mr W last updated on 26/Jul/23

DC=BC=2, say  KD=1  ∠KCD=α, say  (1+2 cos 60°) tan (60°−α)=2 sin 60°  ⇒tan (60°−α)=((√3)/2)  ⇒α=60°−tan^(−1) ((√3)/2)  ∠BCI=β, say  β=120°−90°−α=30°−α=tan^(−1) ((√3)/2)−30°  BI=x, say  (x+2 cos 60°)tan (60°−β)=2 sin 60°  (x+1)tan (90°−tan^(−1) ((√3)/2))=(√3)  ⇒x=(√3) ×((√3)/2)−1=(1/2)  (Δ_(BIC) /Δ_(CKD) )=((BI)/(KD))=(x/1)=(1/2) ✓

$${DC}={BC}=\mathrm{2},\:{say} \\ $$$${KD}=\mathrm{1} \\ $$$$\angle{KCD}=\alpha,\:{say} \\ $$$$\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\mathrm{60}°\right)\:\mathrm{tan}\:\left(\mathrm{60}°−\alpha\right)=\mathrm{2}\:\mathrm{sin}\:\mathrm{60}° \\ $$$$\Rightarrow\mathrm{tan}\:\left(\mathrm{60}°−\alpha\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\mathrm{60}°−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\angle{BCI}=\beta,\:{say} \\ $$$$\beta=\mathrm{120}°−\mathrm{90}°−\alpha=\mathrm{30}°−\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{30}° \\ $$$${BI}={x},\:{say} \\ $$$$\left({x}+\mathrm{2}\:\mathrm{cos}\:\mathrm{60}°\right)\mathrm{tan}\:\left(\mathrm{60}°−\beta\right)=\mathrm{2}\:\mathrm{sin}\:\mathrm{60}° \\ $$$$\left({x}+\mathrm{1}\right)\mathrm{tan}\:\left(\mathrm{90}°−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{3}}\:×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\Delta_{{BIC}} }{\Delta_{{CKD}} }=\frac{{BI}}{{KD}}=\frac{{x}}{\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\:\checkmark \\ $$

Commented by Shlock last updated on 26/Jul/23

Nice work, Prof!

Answered by mr W last updated on 27/Jul/23

Commented by mr W last updated on 27/Jul/23

tan α=((1+1)/( (√3)))=(2/( (√3)))  α+β=180°−90°=90°  tan β=(1/(tan α))=((√3)/2)=((x+1)/( (√3)))  ⇒x=(3/2)−1=(1/2)  ((ΔBIC)/(ΔKDC))=((IB)/(KD))=(1/2)

$$\mathrm{tan}\:\alpha=\frac{\mathrm{1}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}} \\ $$$$\alpha+\beta=\mathrm{180}°−\mathrm{90}°=\mathrm{90}° \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\Delta{BIC}}{\Delta{KDC}}=\frac{{IB}}{{KD}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com