Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 195170 by mathlove last updated on 25/Jul/23

f(x)= { ((x^7 +2x+1       ;x≥2)),((x^2 +7x+4        ;x<1)) :}  f^′ (1)=?

$${f}\left({x}\right)=\begin{cases}{{x}^{\mathrm{7}} +\mathrm{2}{x}+\mathrm{1}\:\:\:\:\:\:\:;{x}\geqslant\mathrm{2}}\\{{x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{4}\:\:\:\:\:\:\:\:;{x}<\mathrm{1}}\end{cases} \\ $$$${f}^{'} \left(\mathrm{1}\right)=? \\ $$

Answered by MM42 last updated on 25/Jul/23

f(1) , not available so  not available f′.

$${f}\left(\mathrm{1}\right)\:,\:{not}\:{available}\:{so} \\ $$$${not}\:{available}\:{f}'. \\ $$

Answered by dimentri last updated on 25/Jul/23

  f ′(1) = lim_(x→1^+ )  f ′(x)= lim_(x→1^− )  f ′(x)   = lim_(x→1^+ )  (7x^6 +2)= 9   = lim_(x→1^− )  (2x+7)=9    determinant ((( W)))

$$\:\:{f}\:'\left(\mathrm{1}\right)\:=\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:{f}\:'\left({x}\right)=\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:{f}\:'\left({x}\right) \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\left(\mathrm{7}{x}^{\mathrm{6}} +\mathrm{2}\right)=\:\mathrm{9} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\left(\mathrm{2}{x}+\mathrm{7}\right)=\mathrm{9} \\ $$$$\:\begin{array}{|c|}{\:\underbrace{\mathcal{W}}}\\\hline\end{array} \\ $$

Commented by MM42 last updated on 25/Jul/23

f′(a)=lim_(x→a)  ((f(x)−f(a))/(x−a))  f_+ ′(a)=lim_(x→a^+ )  ((f(x)−f(a))/(x−a))  f_− ′(a)=lim_(x→a^− )  ((f(x)−f(a))/(x−a))  therefore ,there most always be  “f(a)”    for  x≤2 → f ′(x)=7x^6 +2⇒f′_+ (2)=7×64+2=450=f′(2)  if   x<1→f′(x)=2x+7 .but not   exist  f′(1)

$${f}'\left({a}\right)={lim}_{{x}\rightarrow{a}} \:\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}} \\ $$$${f}_{+} '\left({a}\right)={lim}_{{x}\rightarrow{a}^{+} } \:\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}} \\ $$$${f}_{−} '\left({a}\right)={lim}_{{x}\rightarrow{a}^{−} } \:\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}} \\ $$$${therefore}\:,{there}\:{most}\:{always}\:{be}\:\:``{f}\left({a}\right)'' \\ $$$$ \\ $$$${for}\:\:{x}\leqslant\mathrm{2}\:\rightarrow\:{f}\:'\left({x}\right)=\mathrm{7}{x}^{\mathrm{6}} +\mathrm{2}\Rightarrow{f}'_{+} \left(\mathrm{2}\right)=\mathrm{7}×\mathrm{64}+\mathrm{2}=\mathrm{450}={f}'\left(\mathrm{2}\right) \\ $$$${if}\:\:\:{x}<\mathrm{1}\rightarrow{f}'\left({x}\right)=\mathrm{2}{x}+\mathrm{7}\:.{but}\:{not}\: \\ $$$${exist}\:\:{f}'\left(\mathrm{1}\right) \\ $$

Commented by mathlove last updated on 26/Jul/23

what is the  value  f_− ^′ (1)=?

$${what}\:{is}\:{the}\:\:{value} \\ $$$${f}_{−} ^{'} \left(\mathrm{1}\right)=?\:\:\:\: \\ $$

Commented by MM42 last updated on 26/Jul/23

not exist.because not exist  f(1)

$${not}\:{exist}.{because}\:{not}\:{exist}\:\:{f}\left(\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com