Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195124 by Shlock last updated on 25/Jul/23

Answered by witcher3 last updated on 25/Jul/23

(√x)+(√y)≤(√((x+1)(y+1)))  ⇔x+y+2(√(xy))≤xy+x+y+1⇔xy+1≥2(√(xy)),AM−GM  ⇒∀(x,y)∈R_+ (√x)+(√y)≤(√((x+1)(y+1)))  ⇒∀(a,b)∈[1,∞[^2   (√(a−1))+(√(b−1))≤(√(ab))  (√(a−1))+(√(b−1))+(√(c−1))≤(√(ab))+(√(c−1))≤(√((ab+1)c))=(√(abc+c))  ⇔(√(a−1))+(√(b−1))+(√(c−1))≤(√(abc+c))

$$\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\leqslant\sqrt{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)} \\ $$$$\Leftrightarrow\mathrm{x}+\mathrm{y}+\mathrm{2}\sqrt{\mathrm{xy}}\leqslant\mathrm{xy}+\mathrm{x}+\mathrm{y}+\mathrm{1}\Leftrightarrow\mathrm{xy}+\mathrm{1}\geqslant\mathrm{2}\sqrt{\mathrm{xy}},\mathrm{AM}−\mathrm{GM} \\ $$$$\Rightarrow\forall\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}_{+} \sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\leqslant\sqrt{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)} \\ $$$$\Rightarrow\forall\left(\mathrm{a},\mathrm{b}\right)\in\left[\mathrm{1},\infty\left[^{\mathrm{2}} \right.\right. \\ $$$$\sqrt{\mathrm{a}−\mathrm{1}}+\sqrt{\mathrm{b}−\mathrm{1}}\leqslant\sqrt{\mathrm{ab}} \\ $$$$\sqrt{\mathrm{a}−\mathrm{1}}+\sqrt{\mathrm{b}−\mathrm{1}}+\sqrt{\mathrm{c}−\mathrm{1}}\leqslant\sqrt{\mathrm{ab}}+\sqrt{\mathrm{c}−\mathrm{1}}\leqslant\sqrt{\left(\mathrm{ab}+\mathrm{1}\right)\mathrm{c}}=\sqrt{\mathrm{abc}+\mathrm{c}} \\ $$$$\Leftrightarrow\sqrt{\mathrm{a}−\mathrm{1}}+\sqrt{\mathrm{b}−\mathrm{1}}+\sqrt{\mathrm{c}−\mathrm{1}}\leqslant\sqrt{\mathrm{abc}+\mathrm{c}} \\ $$$$ \\ $$

Commented by Shlock last updated on 25/Jul/23

Perfect ��

Commented by witcher3 last updated on 26/Jul/23

thank You God bless You

$$\mathrm{thank}\:\mathrm{You}\:\mathrm{God}\:\mathrm{bless}\:\mathrm{You} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com