Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19506 by Tinkutara last updated on 12/Aug/17

Prove that the equation of the line  joining the points z_1  and z_2  can be put  in the form z = tz_1  + (1 − t)z_2 , where  t is a parameter.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$

Answered by ajfour last updated on 12/Aug/17

z−z_2 =t(z_1 −z_2 )  ⇒  z= tz_1 +(1−t)z_2  .

$$\mathrm{z}−\mathrm{z}_{\mathrm{2}} =\mathrm{t}\left(\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\mathrm{z}=\:\mathrm{tz}_{\mathrm{1}} +\left(\mathrm{1}−\mathrm{t}\right)\mathrm{z}_{\mathrm{2}} \:. \\ $$

Commented by Tinkutara last updated on 12/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 12/Aug/17

z , z_1 , z_2 being on the same line,  z−z_2  is parallel to z_1 −z_2  .

$$\mathrm{z}\:,\:\mathrm{z}_{\mathrm{1}} ,\:\mathrm{z}_{\mathrm{2}} \mathrm{being}\:\mathrm{on}\:\mathrm{the}\:\mathrm{same}\:\mathrm{line}, \\ $$$$\mathrm{z}−\mathrm{z}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com