Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 194913 by cortano12 last updated on 19/Jul/23

Answered by witcher3 last updated on 19/Jul/23

(f(x)+f′′(x))cos(x)=g(x)  ∫^(π/2) _0 f′′cos(x)dx=f′cos(x)]_0 ^(π/2) +∫f′sin(x)dx  =−f′(0)+fsin(x)]_0 ^(π/2) −∫_0 ^(π/2) fcosx)dx  ⇔∫_0 ^(π/2) (f+f′′)cos(x)dx=f((π/2))−f′(0)=2  f′(0)=−1

$$\left(\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}''\left(\mathrm{x}\right)\right)\mathrm{cos}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\left.\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{2}}} \mathrm{f}''\mathrm{cos}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{f}'\mathrm{cos}\left(\mathrm{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int\mathrm{f}'\mathrm{sin}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\left.=\left.−\mathrm{f}'\left(\mathrm{0}\right)+\mathrm{fsin}\left(\mathrm{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{fcosx}\right)\mathrm{dx} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{f}+\mathrm{f}''\right)\mathrm{cos}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{f}\left(\frac{\pi}{\mathrm{2}}\right)−\mathrm{f}'\left(\mathrm{0}\right)=\mathrm{2} \\ $$$$\mathrm{f}'\left(\mathrm{0}\right)=−\mathrm{1} \\ $$$$ \\ $$

Answered by dimentri last updated on 20/Jul/23

     ⋐

$$\:\:\:\:\:\underbrace{\Subset} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com