Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194899 by kapoorshah last updated on 19/Jul/23

Answered by Frix last updated on 19/Jul/23

y=px∧z=qx  ⇒  x^2 =(5/(1−pq))=(8/(p^2 −q))=((10)/(q^2 −p))  (5/(1−pq))=(8/(p^2 −q)) ⇒ q=((8−5p^2 )/(8p−5))  Inserting in (5/(1−pq))=((10)/(q^2 −p)) and transforming  p^4 +((14p^3 )/(55))=p+((14)/(55))  ⇒ p=−((14)/(55)) [∨p=1∨p=−(1/2)±((√3)/2)i _(the given eqs)^(don′t satisfy) ]  Testing all solutions we get  q=−((12)/(11))  x=±((55)/( (√(437))))∧y=∓((14)/( (√(437))))∧z=∓((60)/( (√(437))))

$${y}={px}\wedge{z}={qx} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{1}−{pq}}=\frac{\mathrm{8}}{{p}^{\mathrm{2}} −{q}}=\frac{\mathrm{10}}{{q}^{\mathrm{2}} −{p}} \\ $$$$\frac{\mathrm{5}}{\mathrm{1}−{pq}}=\frac{\mathrm{8}}{{p}^{\mathrm{2}} −{q}}\:\Rightarrow\:{q}=\frac{\mathrm{8}−\mathrm{5}{p}^{\mathrm{2}} }{\mathrm{8}{p}−\mathrm{5}} \\ $$$$\mathrm{Inserting}\:\mathrm{in}\:\frac{\mathrm{5}}{\mathrm{1}−{pq}}=\frac{\mathrm{10}}{{q}^{\mathrm{2}} −{p}}\:\mathrm{and}\:\mathrm{transforming} \\ $$$${p}^{\mathrm{4}} +\frac{\mathrm{14}{p}^{\mathrm{3}} }{\mathrm{55}}={p}+\frac{\mathrm{14}}{\mathrm{55}} \\ $$$$\Rightarrow\:{p}=−\frac{\mathrm{14}}{\mathrm{55}}\:\left[\vee{p}=\mathrm{1}\vee{p}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\:_{\mathrm{the}\:\mathrm{given}\:\mathrm{eqs}} ^{\mathrm{don}'\mathrm{t}\:\mathrm{satisfy}} \right] \\ $$$$\mathrm{Testing}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{we}\:\mathrm{get} \\ $$$${q}=−\frac{\mathrm{12}}{\mathrm{11}} \\ $$$${x}=\pm\frac{\mathrm{55}}{\:\sqrt{\mathrm{437}}}\wedge{y}=\mp\frac{\mathrm{14}}{\:\sqrt{\mathrm{437}}}\wedge{z}=\mp\frac{\mathrm{60}}{\:\sqrt{\mathrm{437}}} \\ $$

Commented by kapoorshah last updated on 19/Jul/23

nice  thank you

$${nice} \\ $$$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com