Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194086 by mathlove last updated on 27/Jun/23

f(x)=2y^2 +4y+3  then a_(0 ) equle to  a)   p(5)                      b)    7  c)      3                          d) not defined

$${f}\left({x}\right)=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{3}\:\:{then}\:{a}_{\mathrm{0}\:} {equle}\:{to} \\ $$$$\left.{a}\left.\right)\:\:\:{p}\left(\mathrm{5}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}\right)\:\:\:\:\mathrm{7} \\ $$$$\left.{c}\left.\right)\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{d}\right)\:{not}\:{defined} \\ $$

Commented by Frix last updated on 27/Jun/23

If I′m 195cm tall and I live in house 23 then  how old is my wife?  (a) r^2 π  (b) Eleonore  (c) 164cm  (d) false

$$\mathrm{If}\:\mathrm{I}'\mathrm{m}\:\mathrm{195cm}\:\mathrm{tall}\:\mathrm{and}\:\mathrm{I}\:\mathrm{live}\:\mathrm{in}\:\mathrm{house}\:\mathrm{23}\:\mathrm{then} \\ $$$$\mathrm{how}\:\mathrm{old}\:\mathrm{is}\:\mathrm{my}\:\mathrm{wife}? \\ $$$$\left({a}\right)\:{r}^{\mathrm{2}} \pi \\ $$$$\left({b}\right)\:\mathrm{Eleonore} \\ $$$$\left({c}\right)\:\mathrm{164}{cm} \\ $$$$\left({d}\right)\:\mathrm{false} \\ $$

Answered by MikeH last updated on 30/Jun/23

This is the most hilarious question  I′ve ever seen LOL.  I simply believe you′re tryna have the standard  form of quadratic function (f(x) = a_2 x^2 +a_1 x + a_0 )  but dude!! Define things properly

$$\mathrm{This}\:\mathrm{is}\:\mathrm{the}\:\mathrm{most}\:\mathrm{hilarious}\:\mathrm{question} \\ $$$$\mathrm{I}'\mathrm{ve}\:\mathrm{ever}\:\mathrm{seen}\:\mathrm{LOL}. \\ $$$$\mathrm{I}\:\mathrm{simply}\:\mathrm{believe}\:\mathrm{you}'\mathrm{re}\:\mathrm{tryna}\:\mathrm{have}\:\mathrm{the}\:\mathrm{standard} \\ $$$$\mathrm{form}\:\mathrm{of}\:\mathrm{quadratic}\:\mathrm{function}\:\left({f}\left({x}\right)\:=\:{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}\:+\:{a}_{\mathrm{0}} \right) \\ $$$$\mathrm{but}\:\mathrm{dude}!!\:\mathrm{Define}\:\mathrm{things}\:\mathrm{properly} \\ $$$$ \\ $$

Commented by mathlove last updated on 02/Jul/23

tnk

$${tnk} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com