Question Number 193962 by Abdullahrussell last updated on 24/Jun/23 | ||
![]() | ||
Answered by deleteduser1 last updated on 24/Jun/23 | ||
![]() | ||
$$\Rightarrow{f}\left({x}\right)={Q}\left({x}\right)\left({x}−{a}\right)\left({x}−{b}\right)+{R}\Rightarrow{f}\left({a}\right)={R},{f}\left({b}\right)={R} \\ $$$$\Rightarrow\frac{{f}\left({a}\right)\left({x}−{b}\right)−{f}\left({b}\right)\left({x}−{a}\right)}{{a}−{b}}=\frac{{R}\left({x}−{b}−{x}+{a}\right)}{{a}−{b}}={R} \\ $$ | ||
Answered by cortano12 last updated on 24/Jun/23 | ||
![]() | ||
$$\:\:\: \\ $$$$ {x}={a}\Rightarrow\mathrm{f}\left({a}\right)=\:{ma}+{n} \\ $$$$\:{x}={b}\Rightarrow\mathrm{f}\left({b}\right)={mb}+{n}\: \\ $$$$\:\:\Rightarrow\begin{cases}{{m}=\frac{{f}\left({a}\right)−{f}\left({b}\right)}{{a}−{b}}}\\{{n}={f}\left({a}\right)−{a}\left(\frac{{f}\left({a}\right)−{f}\left({b}\right)}{{a}−{b}}\right)}\end{cases} \\ $$$$\:\:\Rightarrow{n}=\frac{{af}\left({a}\right)−{bf}\left({a}\right)−{af}\left({a}\right)+{af}\left({b}\right)}{{a}−{b}} \\ $$$$\:\:\Rightarrow{n}=\:\frac{{af}\left({b}\right)−{bf}\left({a}\right)}{{a}−{b}} \\ $$$$\: \\ $$$$ \left(\frac{{f}\left({a}\right)−{f}\left({b}\right)}{{a}−{b}}\right){x}+\frac{{af}\left({b}\right)−{bf}\left({a}\right)}{{a}−{b}} \\ $$$$\:\:\begin{array}{|c|}{\mathrm{R}=\frac{{f}\left({a}\right)\left({x}−{b}\right)−{f}\left({b}\right)\left({x}−{a}\right)}{{a}−{b}}}\\\hline\end{array} \\ $$$$ \\ $$$$ \\ $$ | ||