Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 193768 by cortano12 last updated on 19/Jun/23

   f(x) = 2+∫_0 ^( x) (2t+f(t))^2 dt     then ∫_(−1) ^2  f(x) dx =

$$\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{2}+\underset{\mathrm{0}} {\overset{\:\mathrm{x}} {\int}}\left(\mathrm{2t}+\mathrm{f}\left(\mathrm{t}\right)\right)^{\mathrm{2}} \mathrm{dt}\: \\ $$$$\:\:\mathrm{then}\:\underset{−\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:= \\ $$

Answered by gatocomcirrose last updated on 20/Jun/23

f′(x)=(2x+f(x))^2   v(x)=2x+y(x)⇒v′(x)=2+f′(x)=2+v(x)^2   (dv/(2+v^2 ))=dx⇒(1/( (√2)))arctan(((v(x))/( (√2))))=x+c_1   ⇒v(x)=(√2)tan((√2)x+C)  ⇒f(x)=(√2)tan((√2)x+C)−2x    ∫_(−1) ^2 ((√2)tan((√2)x+C)−2x)dx  =(√2)∫_(−1) ^2 tan((√2)x+C)dx−3  =[−ln∣cos((√2)x+C)∣]_(−1) ^2 −3  =ln∣cos(C−(√2))∣−ln∣cos(2(√2)+C)∣−3  =ln∣((cos(C−(√2)))/(cos(C+2(√2))))∣−3, C∈R

$$\mathrm{f}'\left(\mathrm{x}\right)=\left(\mathrm{2x}+\mathrm{f}\left(\mathrm{x}\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{v}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{y}\left(\mathrm{x}\right)\Rightarrow\mathrm{v}'\left(\mathrm{x}\right)=\mathrm{2}+\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{2}+\mathrm{v}\left(\mathrm{x}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{dv}}{\mathrm{2}+\mathrm{v}^{\mathrm{2}} }=\mathrm{dx}\Rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{arctan}\left(\frac{\mathrm{v}\left(\mathrm{x}\right)}{\:\sqrt{\mathrm{2}}}\right)=\mathrm{x}+\mathrm{c}_{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{v}\left(\mathrm{x}\right)=\sqrt{\mathrm{2}}\mathrm{tan}\left(\sqrt{\mathrm{2}}\mathrm{x}+\mathrm{C}\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2}}\mathrm{tan}\left(\sqrt{\mathrm{2}}\mathrm{x}+\mathrm{C}\right)−\mathrm{2x} \\ $$$$ \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{2}} \left(\sqrt{\mathrm{2}}\mathrm{tan}\left(\sqrt{\mathrm{2}}\mathrm{x}+\mathrm{C}\right)−\mathrm{2x}\right)\mathrm{dx} \\ $$$$=\sqrt{\mathrm{2}}\int_{−\mathrm{1}} ^{\mathrm{2}} \mathrm{tan}\left(\sqrt{\mathrm{2}}\mathrm{x}+\mathrm{C}\right)\mathrm{dx}−\mathrm{3} \\ $$$$=\left[−\mathrm{ln}\mid\mathrm{cos}\left(\sqrt{\mathrm{2}}\mathrm{x}+\mathrm{C}\right)\mid\right]_{−\mathrm{1}} ^{\mathrm{2}} −\mathrm{3} \\ $$$$=\mathrm{ln}\mid\mathrm{cos}\left(\mathrm{C}−\sqrt{\mathrm{2}}\right)\mid−\mathrm{ln}\mid\mathrm{cos}\left(\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{C}\right)\mid−\mathrm{3} \\ $$$$=\mathrm{ln}\mid\frac{\mathrm{cos}\left(\mathrm{C}−\sqrt{\mathrm{2}}\right)}{\mathrm{cos}\left(\mathrm{C}+\mathrm{2}\sqrt{\mathrm{2}}\right)}\mid−\mathrm{3},\:\mathrm{C}\in\mathbb{R} \\ $$

Commented by mr W last updated on 20/Jun/23

from f(x)∣_(x=0) =2 you can get C.

$${from}\:{f}\left({x}\right)\mid_{{x}=\mathrm{0}} =\mathrm{2}\:{you}\:{can}\:{get}\:{C}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com