Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 193750 by thean last updated on 19/Jun/23

Answered by Subhi last updated on 19/Jun/23

only one number can be zero to give the mini value  suppose b=0 ⇛ a+c=2  (a/(3a^2 ))+(c/(3c^2 )) = (1/3)((1/a)+(1/b))  (a+b)((1/a)+(1/b))≥(1+1)^2 =4 (chauchy−schwartz)  ((1/a)+(1/b))≥(4/(a+b))=(4/2)=2  (a/(3a^2 ))+(c/(3c^2 )) = (1/3)((1/a)+(1/b))≥(2/3)

$${only}\:{one}\:{number}\:{can}\:{be}\:{zero}\:{to}\:{give}\:{the}\:{mini}\:{value} \\ $$$${suppose}\:{b}=\mathrm{0}\:\Rrightarrow\:{a}+{c}=\mathrm{2} \\ $$$$\frac{{a}}{\mathrm{3}{a}^{\mathrm{2}} }+\frac{{c}}{\mathrm{3}{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right) \\ $$$$\left({a}+{b}\right)\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\geqslant\left(\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4}\:\left({chauchy}−{schwartz}\right) \\ $$$$\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\geqslant\frac{\mathrm{4}}{{a}+{b}}=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$$$\frac{{a}}{\mathrm{3}{a}^{\mathrm{2}} }+\frac{{c}}{\mathrm{3}{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\geqslant\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com