Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 193749 by Mingma last updated on 19/Jun/23

Answered by som(math1967) last updated on 19/Jun/23

Commented by som(math1967) last updated on 19/Jun/23

AD=DC=AC=12cm  ∴∠ACD=60  ∠ACE=tan^(−1) (5/(12))  ∠ECD=60−tan^(−1) ((5/(12)))  CE=(√(5^2 +12^2 ))=13cm  Area of △CED  =(1/2)×CE×CD×sin(60−tan^(−1) (5/(12)))  =(1/2)×13×12×{sin60×cos(tan^(−1) (5/(12)))   −cos60×sin(tan^(−1) (5/(12)))}  =13×6(((√3)/2)×((12)/(13)) −(1/2)×(5/(13)))  =13×6×(1/(26))×(12(√3)−5)  =3(12(√3)−5)cm^2

$${AD}={DC}={AC}=\mathrm{12}{cm} \\ $$$$\therefore\angle{ACD}=\mathrm{60} \\ $$$$\angle{ACE}=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}} \\ $$$$\angle{ECD}=\mathrm{60}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{12}}\right) \\ $$$${CE}=\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }=\mathrm{13}{cm} \\ $$$${Area}\:{of}\:\bigtriangleup{CED} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{CE}×{CD}×{sin}\left(\mathrm{60}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{13}×\mathrm{12}×\left\{{sin}\mathrm{60}×{cos}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}}\right)\right. \\ $$$$\left.\:−{cos}\mathrm{60}×{sin}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}}\right)\right\} \\ $$$$=\mathrm{13}×\mathrm{6}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\frac{\mathrm{12}}{\mathrm{13}}\:−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{5}}{\mathrm{13}}\right) \\ $$$$=\mathrm{13}×\mathrm{6}×\frac{\mathrm{1}}{\mathrm{26}}×\left(\mathrm{12}\sqrt{\mathrm{3}}−\mathrm{5}\right) \\ $$$$=\mathrm{3}\left(\mathrm{12}\sqrt{\mathrm{3}}−\mathrm{5}\right){cm}^{\mathrm{2}} \\ $$

Commented by Mingma last updated on 19/Jun/23

Perfect ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com