Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 193721 by sciencestudentW last updated on 18/Jun/23

prove that a^(log_a N) =N

$${prove}\:{that}\:{a}^{{log}_{{a}} {N}} ={N} \\ $$

Answered by MATHEMATICSAM last updated on 18/Jun/23

From log definition we know if  a^x  = N then we can write it as  x = log_a N  a^x  = N  ⇒ a^(log_a N)  = N [∵ x = log_a N]

$$\mathrm{From}\:\mathrm{log}\:\mathrm{definition}\:\mathrm{we}\:\mathrm{know}\:\mathrm{if} \\ $$$${a}^{{x}} \:=\:{N}\:\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{write}\:\mathrm{it}\:\mathrm{as} \\ $$$${x}\:=\:\mathrm{log}_{{a}} {N} \\ $$$${a}^{{x}} \:=\:{N} \\ $$$$\Rightarrow\:{a}^{\mathrm{log}_{{a}} {N}} \:=\:{N}\:\left[\because\:{x}\:=\:\mathrm{log}_{{a}} {N}\right] \\ $$

Answered by mr W last updated on 18/Jun/23

say a^(log_a  N) =M  from definition we have  log_a  M=log_a  N.  since log_a  x is one to one function, i.e.  log_a  x_1 =log_a  x_2  ⇔ x_1 =x_2 , we get  M=N. that means  a^(log_a  N) =N.

$${say}\:{a}^{\mathrm{log}_{{a}} \:{N}} ={M} \\ $$$${from}\:{definition}\:{we}\:{have} \\ $$$$\mathrm{log}_{{a}} \:{M}=\mathrm{log}_{{a}} \:{N}. \\ $$$${since}\:\mathrm{log}_{{a}} \:{x}\:{is}\:{one}\:{to}\:{one}\:{function},\:{i}.{e}. \\ $$$$\mathrm{log}_{{a}} \:{x}_{\mathrm{1}} =\mathrm{log}_{{a}} \:{x}_{\mathrm{2}} \:\Leftrightarrow\:{x}_{\mathrm{1}} ={x}_{\mathrm{2}} ,\:{we}\:{get} \\ $$$${M}={N}.\:{that}\:{means} \\ $$$${a}^{\mathrm{log}_{{a}} \:{N}} ={N}. \\ $$

Answered by JDamian last updated on 18/Jun/23

f(x)=a^x   g(x)=log_a (x)    g(x)=f^(−1) (x)  f(x)=g^(−1) (x)    g ○f = f(g(x)) = x  f○g = g(f(x)) = x    f(g(N))=N         a^(log_a N) =N  g(f(N))=N         log_a (a^N )=N

$${f}\left({x}\right)={a}^{{x}} \\ $$$${g}\left({x}\right)=\mathrm{log}_{{a}} \left({x}\right) \\ $$$$ \\ $$$${g}\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right) \\ $$$${f}\left({x}\right)={g}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$${g}\:\circ{f}\:=\:{f}\left({g}\left({x}\right)\right)\:=\:{x} \\ $$$${f}\circ{g}\:=\:{g}\left({f}\left({x}\right)\right)\:=\:{x} \\ $$$$ \\ $$$${f}\left({g}\left({N}\right)\right)={N}\:\:\:\:\:\:\:\:\:{a}^{\mathrm{log}_{{a}} {N}} ={N} \\ $$$${g}\left({f}\left({N}\right)\right)={N}\:\:\:\:\:\:\:\:\:\mathrm{log}_{{a}} \left({a}^{{N}} \right)={N} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com