Question Number 193533 by horsebrand11 last updated on 16/Jun/23 | ||
$$\:\:\:\mathrm{If}\:\mathrm{cot}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}=\mathrm{4}\:\mathrm{then} \\ $$$$\:\:\:\:\mathrm{cot}\:^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{2x}}\:−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:=? \\ $$ | ||
Answered by MM42 last updated on 16/Jun/23 | ||
$$\mathrm{1}−{tan}^{\mathrm{2}} {x}=\mathrm{4}{tanx}\Rightarrow{tan}^{\mathrm{2}} {x}+\mathrm{4}{tanx}−\mathrm{1}=\mathrm{0} \\ $$$${tanx}=−\mathrm{2}\pm\sqrt{\mathrm{5}} \\ $$$${A}=\frac{\mathrm{1}}{{tan}^{\mathrm{2}} {x}}+\frac{\mathrm{1}+{tan}^{\mathrm{2}} {x}}{{tanx}}\:−{tan}^{\mathrm{2}} {x} \\ $$ | ||
Answered by Rajpurohith last updated on 19/Jun/23 | ||
$${say}\:{a}={tanx}\:{and}\:{b}={cotx}\:\Rightarrow{ab}=\mathrm{1} \\ $$$${given}\:{b}−{a}=\mathrm{4} \\ $$$$\:\Rightarrow\left({b}+{a}\right)^{\mathrm{2}} −\left({b}−{a}\right)^{\mathrm{2}} =\mathrm{4}{ab}=\mathrm{4} \\ $$$$\Rightarrow\left({b}+{a}\right)^{\mathrm{2}} −\mathrm{16}=\mathrm{4}\:\Rightarrow{b}+{a}=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\Rightarrow\mathrm{2}{b}=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}\:}\:\Rightarrow\:{b}={cotx}=\mathrm{2}+\sqrt{\mathrm{5}} \\ $$$$\Rightarrow{a}={tanx}=−\mathrm{2}+\sqrt{\mathrm{5}} \\ $$$$\Rightarrow{cot}^{\mathrm{2}} {x}−{tan}^{\mathrm{2}} {x}=\left({b}+{a}\right)\left({b}−{a}\right)=\mathrm{2}\sqrt{\mathrm{5}}.\mathrm{4}=\mathrm{8}\sqrt{\mathrm{5}} \\ $$$${so}\:{sin}\mathrm{2}{x}=\frac{\mathrm{2}{a}}{\mathrm{1}+{a}^{\mathrm{2}} }=\frac{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4}}{\mathrm{1}+\mathrm{4}+\mathrm{5}−\mathrm{4}\sqrt{\mathrm{5}}}=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)}{\mathrm{10}−\mathrm{4}\sqrt{\mathrm{5}}} \\ $$$$=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)}{\:\mathrm{2}\sqrt{\mathrm{5}}\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow{the}\:{value}\:{of}\:{given}\:{expression}\:{is} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{5}}−\left(−\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}\sqrt{\mathrm{5}}+\left(\mathrm{2}\sqrt{\mathrm{5}}\right)\left(\mathrm{4}\right)=\mathrm{10}\sqrt{\mathrm{5}}\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$$$ \\ $$ | ||