Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 193253 by MATHEMATICSAM last updated on 08/Jun/23

Select the correct option with   explaination:  If (1/3)log_3 M + 3log_3 N = 1 + log_(0.008) 5 then  a. M^9  = (9/N)  b. N^9  = (9/M)  c. M^3  = (3/N)  d. N^3  = (3/M)

$$\boldsymbol{\mathrm{Select}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{option}}\:\boldsymbol{\mathrm{with}}\: \\ $$$$\boldsymbol{\mathrm{explaination}}: \\ $$$$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}_{\mathrm{3}} {M}\:+\:\mathrm{3log}_{\mathrm{3}} {N}\:=\:\mathrm{1}\:+\:\mathrm{log}_{\mathrm{0}.\mathrm{008}} \mathrm{5}\:\mathrm{then} \\ $$$$\mathrm{a}.\:{M}^{\mathrm{9}} \:=\:\frac{\mathrm{9}}{{N}} \\ $$$$\mathrm{b}.\:{N}^{\mathrm{9}} \:=\:\frac{\mathrm{9}}{{M}} \\ $$$$\mathrm{c}.\:{M}^{\mathrm{3}} \:=\:\frac{\mathrm{3}}{{N}} \\ $$$$\mathrm{d}.\:{N}^{\mathrm{3}} \:=\:\frac{\mathrm{3}}{{M}}\: \\ $$

Answered by deleteduser1 last updated on 08/Jun/23

log_3 (MN^9 )^(1/3) =1+x  log_(0.008) 5=x⇒(5^(−3)  )^x =5⇒x=−(1/3)  ⇒3^(2/3) =(MN^9 )^(1/3) ⇒9=MN^9 ⇒N^9 =(9/M)

$${log}_{\mathrm{3}} \left({MN}^{\mathrm{9}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{1}+{x} \\ $$$${log}_{\mathrm{0}.\mathrm{008}} \mathrm{5}={x}\Rightarrow\left(\mathrm{5}^{−\mathrm{3}} \:\right)^{{x}} =\mathrm{5}\Rightarrow{x}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{3}^{\frac{\mathrm{2}}{\mathrm{3}}} =\left({MN}^{\mathrm{9}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \Rightarrow\mathrm{9}={MN}^{\mathrm{9}} \Rightarrow{N}^{\mathrm{9}} =\frac{\mathrm{9}}{{M}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com