Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76615 by mhmd last updated on 28/Dec/19

∫sec^3 x dx

$$\int{sec}^{\mathrm{3}} {x}\:{dx} \\ $$

Answered by $@ty@m123 last updated on 28/Dec/19

∫(√(1+tan^2 x)).sec^2 xdx  ∫(√(1+t^2 ))dt  (t/2)(√(1+t^2 ))+(1/2)ln (t+(√(1+t^2 ))) +C  where  t=tan x

$$\int\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}}.\mathrm{sec}\:^{\mathrm{2}} {xdx} \\ $$$$\int\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\frac{{t}}{\mathrm{2}}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}+\sqrt{\left.\mathrm{1}+{t}^{\mathrm{2}} \right)}\:+\mathrm{C}\right. \\ $$$${where}\:\:{t}=\mathrm{tan}\:{x} \\ $$

Answered by john santu last updated on 29/Dec/19

Commented by mhmd last updated on 29/Dec/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by john santu last updated on 29/Dec/19

your welcome sir

$${your}\:{welcome}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com