Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 190625 by mnjuly1970 last updated on 07/Apr/23

           solve in   R   :          ⌊ (1/x) ⌋  + ⌊ x ⌋ = 2

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{solve}\:\mathrm{in}\:\:\:\mathbb{R}\:\:\:: \\ $$$$\:\:\:\:\:\:\:\:\lfloor\:\frac{\mathrm{1}}{{x}}\:\rfloor\:\:+\:\lfloor\:{x}\:\rfloor\:=\:\mathrm{2}\:\:\:\:\: \\ $$$$ \\ $$

Answered by mr W last updated on 07/Apr/23

if x>1:  ⌊(1/x)⌋=0  ⇒⌊x⌋=2  ⇒2≤x<3 ✓  if x=1:  1+1=2 ✓  if x<1:  ⌊x⌋=0  ⇒⌊(1/x)⌋=2  ⇒2≤(1/x)<3  ⇒(1/3)<x≤(1/2) ✓  summary:  (1/3)<x≤(1/2), x=1, 2≤x<3

$${if}\:{x}>\mathrm{1}: \\ $$$$\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{0} \\ $$$$\Rightarrow\lfloor{x}\rfloor=\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}\leqslant{x}<\mathrm{3}\:\checkmark \\ $$$${if}\:{x}=\mathrm{1}: \\ $$$$\mathrm{1}+\mathrm{1}=\mathrm{2}\:\checkmark \\ $$$${if}\:{x}<\mathrm{1}: \\ $$$$\lfloor{x}\rfloor=\mathrm{0} \\ $$$$\Rightarrow\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}\leqslant\frac{\mathrm{1}}{{x}}<\mathrm{3} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}<{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:\checkmark \\ $$$${summary}: \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}<{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}},\:{x}=\mathrm{1},\:\mathrm{2}\leqslant{x}<\mathrm{3} \\ $$

Commented by mnjuly1970 last updated on 07/Apr/23

thank you so much sir W...

$${thank}\:{you}\:{so}\:{much}\:{sir}\:{W}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com