Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 189325 by mnjuly1970 last updated on 14/Mar/23

       prove      Ω= ∫_0 ^(π/2)  (( cos(x)+cos(5x))/(1+ 2sin(x))) =^( ?)  (3/2)

$$ \\ $$$$\:\:\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\Omega=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\:{cos}\left({x}\right)+{cos}\left(\mathrm{5}{x}\right)}{\mathrm{1}+\:\mathrm{2}{sin}\left({x}\right)}\:\overset{\:?} {=}\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$

Answered by Frix last updated on 15/Mar/23

∫_0 ^(π/2) ((cos 5x +cos x)/(1+2sin x))dx=^(t=sin x)   =2∫_0 ^1 (4t^3 −2t^2 −2t+1)dt=  =2[t^4 −((2t^3 )/3)−t^2 +t]_0 ^1 =(2/3)

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{cos}\:\mathrm{5}{x}\:+\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{2sin}\:{x}}{dx}\overset{{t}=\mathrm{sin}\:{x}} {=} \\ $$$$=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{4}{t}^{\mathrm{3}} −\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}\right){dt}= \\ $$$$=\mathrm{2}\left[{t}^{\mathrm{4}} −\frac{\mathrm{2}{t}^{\mathrm{3}} }{\mathrm{3}}−{t}^{\mathrm{2}} +{t}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by mnjuly1970 last updated on 15/Mar/23

thankx alot sir frix

$${thankx}\:{alot}\:{sir}\:{frix} \\ $$

Answered by cortano12 last updated on 15/Mar/23

 cos 5x+cos x=2cos 3x cos 2x   cos 3x=cos 2x cos x−sin 2x sin x  cos 3x = (1−4sin^2 x)cos x   Ω= ∫_0 ^( π/2)  ((2(1−2sin^2 x)(1−4sin^2 x)cos x)/(1+2sin x)) dx   = ∫_0 ^(π/2) 2(1−2sin^2 x)(1−2sin x)cos x dx   =2 ∫_0 ^(π/2) (1−2sin x−2sin^2 x+4sin^3 x)d(sin x)   =2(sin x−sin^2 x−(2/3)sin^3 x+sin^4 x)_0 ^(π/2)    =2(1−1−(2/3)+1)=(2/3)

$$\:\mathrm{cos}\:\mathrm{5x}+\mathrm{cos}\:\mathrm{x}=\mathrm{2cos}\:\mathrm{3x}\:\mathrm{cos}\:\mathrm{2x} \\ $$$$\:\mathrm{cos}\:\mathrm{3x}=\mathrm{cos}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{2x}\:\mathrm{sin}\:\mathrm{x} \\ $$$$\mathrm{cos}\:\mathrm{3x}\:=\:\left(\mathrm{1}−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\right)\mathrm{cos}\:\mathrm{x} \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}\right)\left(\mathrm{1}−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\right)\mathrm{cos}\:\mathrm{x}}{\mathrm{1}+\mathrm{2sin}\:\mathrm{x}}\:\mathrm{dx} \\ $$$$\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{2}\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}\right)\left(\mathrm{1}−\mathrm{2sin}\:\mathrm{x}\right)\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$$$\:=\mathrm{2}\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\left(\mathrm{1}−\mathrm{2sin}\:\mathrm{x}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{4sin}\:^{\mathrm{3}} \mathrm{x}\right)\mathrm{d}\left(\mathrm{sin}\:\mathrm{x}\right) \\ $$$$\:=\mathrm{2}\left(\mathrm{sin}\:\mathrm{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)_{\mathrm{0}} ^{\pi/\mathrm{2}} \\ $$$$\:=\mathrm{2}\left(\mathrm{1}−\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{1}\right)=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by mnjuly1970 last updated on 15/Mar/23

   very nice sir cortano..

$$\:\:\:{very}\:{nice}\:{sir}\:{cortano}.. \\ $$

Commented by Spillover last updated on 15/Mar/23

nice solution

$${nice}\:{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com