Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 189183 by pascal889 last updated on 12/Mar/23

Answered by Rasheed.Sindhi last updated on 13/Mar/23

a: first term of AP,  g: first term of GP  a_1 +g_1 =a+g=8⇒a=8−g  a_3 =a+(3−1)d=a+2(2)  g_3 =gr^(3−1) =g(3)^2   a_3 +g_3 =[a+2(2)]+[g(3)^2 ]=52  ⇒a+9g=48  ⇒8−g+9g=48⇒g=5⇒a=3  (i)AP: 3,5,7,...  (ii)GP: 5,15,45,...  (iii) The new sequence:8,20,52,...

$${a}:\:{first}\:{term}\:{of}\:{AP}, \\ $$$${g}:\:{first}\:{term}\:{of}\:{GP} \\ $$$${a}_{\mathrm{1}} +{g}_{\mathrm{1}} ={a}+{g}=\mathrm{8}\Rightarrow{a}=\mathrm{8}−{g} \\ $$$${a}_{\mathrm{3}} ={a}+\left(\mathrm{3}−\mathrm{1}\right){d}={a}+\mathrm{2}\left(\mathrm{2}\right) \\ $$$${g}_{\mathrm{3}} ={gr}^{\mathrm{3}−\mathrm{1}} ={g}\left(\mathrm{3}\right)^{\mathrm{2}} \\ $$$${a}_{\mathrm{3}} +{g}_{\mathrm{3}} =\left[{a}+\mathrm{2}\left(\mathrm{2}\right)\right]+\left[{g}\left(\mathrm{3}\right)^{\mathrm{2}} \right]=\mathrm{52} \\ $$$$\Rightarrow{a}+\mathrm{9}{g}=\mathrm{48} \\ $$$$\Rightarrow\mathrm{8}−{g}+\mathrm{9}{g}=\mathrm{48}\Rightarrow{g}=\mathrm{5}\Rightarrow{a}=\mathrm{3} \\ $$$$\left({i}\right){AP}:\:\mathrm{3},\mathrm{5},\mathrm{7},... \\ $$$$\left({ii}\right){GP}:\:\mathrm{5},\mathrm{15},\mathrm{45},... \\ $$$$\left({iii}\right)\:{The}\:{new}\:{sequence}:\mathrm{8},\mathrm{20},\mathrm{52},... \\ $$

Commented by pascal889 last updated on 13/Mar/23

please i dont understand the second line sir

$${please}\:{i}\:{dont}\:{understand}\:{the}\:{second}\:{line}\:{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 13/Mar/23

I′ve added some lines to describe.

$${I}'{ve}\:{added}\:{some}\:{lines}\:{to}\:{describe}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com