Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 188998 by SLVR last updated on 10/Mar/23

Commented by SLVR last updated on 10/Mar/23

kindly help me

$${kindly}\:{help}\:{me} \\ $$

Commented by manxsol last updated on 12/Mar/23

Commented by manxsol last updated on 12/Mar/23

Answered by a.lgnaoui last updated on 10/Mar/23

Commented by SLVR last updated on 15/Mar/23

sir...explanation in english..  where i cannot remaining

$${sir}...{explanation}\:{in}\:{english}.. \\ $$$${where}\:{i}\:{cannot}\:{remaining} \\ $$

Answered by manxsol last updated on 12/Mar/23

pto generic C ′ (median)  (x,y,z)=(2t,t,2t)  pto generic B  (bisect)  (x,y,z)=(s,2s,3s)  ((A+B)/2)=C′     (A   C′  B)colineal  A+B=2C′  (−1,1,1)+(s,2s,3s)=(4t,2t,4t)  −1+s=4t   I  s=4t+1  1+2s=2t   II  1+3s=4t  III  III−II     s=2t  2t=4t+1  t=((−1)/2)     s=−1  B=(−1,−2,−3)  C′=(−2,−1,−2)  A=(-1,1,1)  angulos  BA=(0,3,4)  bisec=(1,2,3)  BA.bisec=∣BA∣∣bisec∣∣cosθ  0.1+3.2+4.3=5(√(14))cosθ  cosθ=((18)/(5(√(14))))  BC=C−B  BC=(2t,t,2t)+(1,2,3)  BC=(2t+1,t+2,2t+3)  BC•bisect=∣BC∣∣bisect∣((18)/(5(√(14))))  (2t+1,t+2,2t+3).(1,2,3)=  (√(9t^2 +14+20t)).(√(14))((18)/(5(√(14))))  2t+1+2t+4+6t+9=((18(√(9t^2 +14+20t)))/5)  (10t+14)(5)=18(√(9t^2 +20t+14))  (5t+7)(5)=9(√(9t^2 +14+20t)).  625t^2 +1750t+1225=729t^2 +1134+1620t  104t^2 −130t−91=0  t=−0.5  t=1.75  C=(2t,t,2t)  C=(−1,−(1/2),−1)  C=((7/2),(7/4),(7/2))  BC=(2t+1,t+2,2t+3)  BC=((9/2),((15)/4),((13)/2))  BC=(18,15,26)  L_(BC) :   (x,y,z)=(-1,-2,-3)+t(18,15,26)  x+1=18t  y+2=15t  z+3=26t  ((x+1)/(18))=((y+2)/(15))=((z+3)/(26))  foot perperdicular P(s,2s,3s)  PA•PB=0  PA=(−1,1,1)−(s,2s,3s)  PB=(−1,−2,−3)−(s,2s,3s)  [−1−s,1−2s,1−3s)•(−1−s,−2−2s,−3−3s  (1+2s+s^2 )+(4s^2 +2s−2)+(9s^2 +6s−3)=0  14s^2 +10s−4=0  7s^2 +5s−2=0  7s             −  2  1s              +1  s=−1  s=(2/7)  P=(−1,−2,−3) is Pto B  P=((2/7),(4/7),(6/7))  graphic y conclusions

$${pto}\:{generic}\:{C}\:'\:\left({median}\right) \\ $$$$\left({x},{y},{z}\right)=\left(\mathrm{2}{t},{t},\mathrm{2}{t}\right) \\ $$$${pto}\:{generic}\:{B}\:\:\left({bisect}\right) \\ $$$$\left({x},{y},{z}\right)=\left({s},\mathrm{2}{s},\mathrm{3}{s}\right) \\ $$$$\frac{{A}+{B}}{\mathrm{2}}={C}'\:\:\:\:\:\left({A}\:\:\:{C}'\:\:{B}\right){colineal} \\ $$$${A}+{B}=\mathrm{2}{C}' \\ $$$$\left(−\mathrm{1},\mathrm{1},\mathrm{1}\right)+\left({s},\mathrm{2}{s},\mathrm{3}{s}\right)=\left(\mathrm{4}{t},\mathrm{2}{t},\mathrm{4}{t}\right) \\ $$$$−\mathrm{1}+{s}=\mathrm{4}{t}\:\:\:{I}\:\:{s}=\mathrm{4}{t}+\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{2}{s}=\mathrm{2}{t}\:\:\:{II} \\ $$$$\mathrm{1}+\mathrm{3}{s}=\mathrm{4}{t}\:\:{III} \\ $$$${III}−{II}\:\:\:\:\:{s}=\mathrm{2}{t} \\ $$$$\mathrm{2}{t}=\mathrm{4}{t}+\mathrm{1} \\ $$$${t}=\frac{−\mathrm{1}}{\mathrm{2}}\:\:\:\:\:{s}=−\mathrm{1} \\ $$$${B}=\left(−\mathrm{1},−\mathrm{2},−\mathrm{3}\right) \\ $$$${C}'=\left(−\mathrm{2},−\mathrm{1},−\mathrm{2}\right) \\ $$$${A}=\left(-\mathrm{1},\mathrm{1},\mathrm{1}\right) \\ $$$${angulos} \\ $$$${BA}=\left(\mathrm{0},\mathrm{3},\mathrm{4}\right) \\ $$$${bisec}=\left(\mathrm{1},\mathrm{2},\mathrm{3}\right) \\ $$$${BA}.{bisec}=\mid{BA}\mid\mid{bisec}\mid\mid{cos}\theta \\ $$$$\mathrm{0}.\mathrm{1}+\mathrm{3}.\mathrm{2}+\mathrm{4}.\mathrm{3}=\mathrm{5}\sqrt{\mathrm{14}}{cos}\theta \\ $$$${cos}\theta=\frac{\mathrm{18}}{\mathrm{5}\sqrt{\mathrm{14}}} \\ $$$${BC}={C}−{B} \\ $$$${BC}=\left(\mathrm{2}{t},{t},\mathrm{2}{t}\right)+\left(\mathrm{1},\mathrm{2},\mathrm{3}\right) \\ $$$${BC}=\left(\mathrm{2}{t}+\mathrm{1},{t}+\mathrm{2},\mathrm{2}{t}+\mathrm{3}\right) \\ $$$${BC}\bullet{bisect}=\mid{BC}\mid\mid{bisect}\mid\frac{\mathrm{18}}{\mathrm{5}\sqrt{\mathrm{14}}} \\ $$$$\left(\mathrm{2}{t}+\mathrm{1},{t}+\mathrm{2},\mathrm{2}{t}+\mathrm{3}\right).\left(\mathrm{1},\mathrm{2},\mathrm{3}\right)= \\ $$$$\sqrt{\mathrm{9}{t}^{\mathrm{2}} +\mathrm{14}+\mathrm{20}{t}}.\sqrt{\mathrm{14}}\frac{\mathrm{18}}{\mathrm{5}\sqrt{\mathrm{14}}} \\ $$$$\mathrm{2}{t}+\mathrm{1}+\mathrm{2}{t}+\mathrm{4}+\mathrm{6}{t}+\mathrm{9}=\frac{\mathrm{18}\sqrt{\mathrm{9}{t}^{\mathrm{2}} +\mathrm{14}+\mathrm{20}{t}}}{\mathrm{5}} \\ $$$$\left(\mathrm{10}{t}+\mathrm{14}\right)\left(\mathrm{5}\right)=\mathrm{18}\sqrt{\mathrm{9}{t}^{\mathrm{2}} +\mathrm{20}{t}+\mathrm{14}} \\ $$$$\left(\mathrm{5}{t}+\mathrm{7}\right)\left(\mathrm{5}\right)=\mathrm{9}\sqrt{\mathrm{9}{t}^{\mathrm{2}} +\mathrm{14}+\mathrm{20}{t}}. \\ $$$$\mathrm{625}{t}^{\mathrm{2}} +\mathrm{1750}{t}+\mathrm{1225}=\mathrm{729}{t}^{\mathrm{2}} +\mathrm{1134}+\mathrm{1620}{t} \\ $$$$\mathrm{104}{t}^{\mathrm{2}} −\mathrm{130}{t}−\mathrm{91}=\mathrm{0} \\ $$$${t}=−\mathrm{0}.\mathrm{5} \\ $$$${t}=\mathrm{1}.\mathrm{75} \\ $$$${C}=\left(\mathrm{2}{t},{t},\mathrm{2}{t}\right) \\ $$$${C}=\left(−\mathrm{1},−\frac{\mathrm{1}}{\mathrm{2}},−\mathrm{1}\right) \\ $$$${C}=\left(\frac{\mathrm{7}}{\mathrm{2}},\frac{\mathrm{7}}{\mathrm{4}},\frac{\mathrm{7}}{\mathrm{2}}\right) \\ $$$${BC}=\left(\mathrm{2}{t}+\mathrm{1},{t}+\mathrm{2},\mathrm{2}{t}+\mathrm{3}\right) \\ $$$${BC}=\left(\frac{\mathrm{9}}{\mathrm{2}},\frac{\mathrm{15}}{\mathrm{4}},\frac{\mathrm{13}}{\mathrm{2}}\right) \\ $$$${BC}=\left(\mathrm{18},\mathrm{15},\mathrm{26}\right) \\ $$$${L}_{{BC}} :\: \\ $$$$\left({x},{y},{z}\right)=\left(-\mathrm{1},-\mathrm{2},-\mathrm{3}\right)+{t}\left(\mathrm{18},\mathrm{15},\mathrm{26}\right) \\ $$$${x}+\mathrm{1}=\mathrm{18}{t} \\ $$$${y}+\mathrm{2}=\mathrm{15}{t} \\ $$$${z}+\mathrm{3}=\mathrm{26}{t} \\ $$$$\frac{{x}+\mathrm{1}}{\mathrm{18}}=\frac{{y}+\mathrm{2}}{\mathrm{15}}=\frac{{z}+\mathrm{3}}{\mathrm{26}} \\ $$$${foot}\:{perperdicular}\:{P}\left({s},\mathrm{2}{s},\mathrm{3}{s}\right) \\ $$$${PA}\bullet{PB}=\mathrm{0} \\ $$$${PA}=\left(−\mathrm{1},\mathrm{1},\mathrm{1}\right)−\left({s},\mathrm{2}{s},\mathrm{3}{s}\right) \\ $$$${PB}=\left(−\mathrm{1},−\mathrm{2},−\mathrm{3}\right)−\left({s},\mathrm{2}{s},\mathrm{3}{s}\right) \\ $$$$\left[−\mathrm{1}−{s},\mathrm{1}−\mathrm{2}{s},\mathrm{1}−\mathrm{3}{s}\right)\bullet\left(−\mathrm{1}−{s},−\mathrm{2}−\mathrm{2}{s},−\mathrm{3}−\mathrm{3}{s}\right. \\ $$$$\left(\mathrm{1}+\mathrm{2}{s}+{s}^{\mathrm{2}} \right)+\left(\mathrm{4}{s}^{\mathrm{2}} +\mathrm{2}{s}−\mathrm{2}\right)+\left(\mathrm{9}{s}^{\mathrm{2}} +\mathrm{6}{s}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\mathrm{14}{s}^{\mathrm{2}} +\mathrm{10}{s}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{7}{s}^{\mathrm{2}} +\mathrm{5}{s}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{7}{s}\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\mathrm{2} \\ $$$$\mathrm{1}{s}\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{1} \\ $$$${s}=−\mathrm{1} \\ $$$${s}=\frac{\mathrm{2}}{\mathrm{7}} \\ $$$${P}=\left(−\mathrm{1},−\mathrm{2},−\mathrm{3}\right)\:{is}\:{Pto}\:{B} \\ $$$${P}=\left(\frac{\mathrm{2}}{\mathrm{7}},\frac{\mathrm{4}}{\mathrm{7}},\frac{\mathrm{6}}{\mathrm{7}}\right) \\ $$$${graphic}\:{y}\:{conclusions} \\ $$$$ \\ $$

Commented by SLVR last updated on 15/Mar/23

sir i could not follow well.  which option(s) correct?  i can follow english only

$${sir}\:{i}\:{could}\:{not}\:{follow}\:{well}. \\ $$$${which}\:{option}\left({s}\right)\:{correct}? \\ $$$${i}\:{can}\:{follow}\:{english}\:{only} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com